A213781 Rectangular array: (row n) = b**c, where b(h) = 1+[h/2], c(h) = n-1+h, n>=1, h>=1, [ ] = floor, and ** = convolution.
1, 4, 2, 9, 7, 3, 17, 14, 10, 4, 28, 25, 19, 13, 5, 43, 39, 33, 24, 16, 6, 62, 58, 50, 41, 29, 19, 7, 86, 81, 73, 61, 49, 34, 22, 8, 115, 110, 100, 88, 72, 57, 39, 25, 9, 150, 144, 134, 119, 103, 83, 65, 44, 28, 10, 191, 185, 173, 158, 138, 118, 94, 73, 49, 31
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 1...4....9....17...28...43....62 2...7....14...25...39...58....81 3...10...19...33...50...73....100 4...13...24...41...61...88....119 5...16...29...49...72...103...138 6...19...34...57...83...118...157 7...22...39...65...94...133...176
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
Programs
-
Mathematica
b[n_] := Floor[(n + 2)/2]; c[n_] := n; t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}] TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]] r[n_] := Table[t[n, k], {k, 1, 60}] (* A213781 *) s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}] s1 = Table[s[n], {n, 1, 50}] (* A005712 *)
Formula
T(n,k) = 3*T(n,k-1) - 2*T(n,k-2) - 2*T(n,k-3) + 3*T(n,k-4) - T(n,k-5).
G.f. for row n: f(x)/g(x), where f(x) = x*(n + x - (2*n - 1)*x^2 + (n -1)*x^3) and g(x) = (1 + x)(1 - x)^4.
Comments