cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213782 Principal diagonal of the convolution array A213781.

Original entry on oeis.org

1, 7, 19, 41, 72, 118, 176, 254, 347, 465, 601, 767, 954, 1176, 1422, 1708, 2021, 2379, 2767, 3205, 3676, 4202, 4764, 5386, 6047, 6773, 7541, 8379, 9262, 10220, 11226, 12312, 13449, 14671, 15947, 17313, 18736, 20254, 21832, 23510, 25251, 27097, 29009, 31031
Offset: 1

Views

Author

Clark Kimberling, Jun 22 2012

Keywords

Crossrefs

Programs

  • Mathematica
    (See A213781.)
    LinearRecurrence[{2,1,-4,1,2,-1},{1,7,19,41,72,118},50] (* Harvey P. Dale, Oct 17 2016 *)
  • PARI
    Vec(x*(1+5*x+4*x^2-2*x^4)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 31 2016

Formula

a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: x*(1+5*x+4*x^2-2*x^4) / ((1-x)^4*(1+x)^2). - Corrected by Colin Barker, Jan 31 2016
From Colin Barker, Jan 31 2016: (Start)
a(n) = (16*n^3+66*n^2+6*(-1)^n*n-34*n-3*(-1)^n+3)/48.
a(n) = (8*n^3+33*n^2-14*n)/24 for n even.
a(n) = (8*n^3+33*n^2-20*n+3)/24 for n odd.
(End)