A213782 Principal diagonal of the convolution array A213781.
1, 7, 19, 41, 72, 118, 176, 254, 347, 465, 601, 767, 954, 1176, 1422, 1708, 2021, 2379, 2767, 3205, 3676, 4202, 4764, 5386, 6047, 6773, 7541, 8379, 9262, 10220, 11226, 12312, 13449, 14671, 15947, 17313, 18736, 20254, 21832, 23510, 25251, 27097, 29009, 31031
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Mathematica
(See A213781.) LinearRecurrence[{2,1,-4,1,2,-1},{1,7,19,41,72,118},50] (* Harvey P. Dale, Oct 17 2016 *)
-
PARI
Vec(x*(1+5*x+4*x^2-2*x^4)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 31 2016
Formula
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: x*(1+5*x+4*x^2-2*x^4) / ((1-x)^4*(1+x)^2). - Corrected by Colin Barker, Jan 31 2016
From Colin Barker, Jan 31 2016: (Start)
a(n) = (16*n^3+66*n^2+6*(-1)^n*n-34*n-3*(-1)^n+3)/48.
a(n) = (8*n^3+33*n^2-14*n)/24 for n even.
a(n) = (8*n^3+33*n^2-20*n+3)/24 for n odd.
(End)