A213788
a(n) = Sum_{1<=iA000129(m).
0, 0, 0, 10, 214, 3491, 52001, 748788, 10636260, 150248190, 2117562834, 29816257390, 419662506490, 5905775317025, 83104503504515, 1169392060102440, 16454728773220584, 231536384221100316, 3257968708458764196, 45843125116860034258, 645061876629223784830, 9076710308820189950975
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..275
- Index entries for linear recurrences with constant coefficients, signature (21,-98,-34,616,-532,-62,98,-7,-1).
Programs
-
Maple
a:= n-> (Matrix(9, (i, j)-> `if`(i=j-1, 1, `if`(i=9, [-1, -7, 98, -62, -532, 616, -34, -98, 21][j], 0)))^(n+3). <<5, -1, 0, 0, 0, 0, 10, 214, 3491>>)[1, 1]: seq (a(n), n=0..30); # Alois P. Heinz, Jun 20 2012
-
Mathematica
LinearRecurrence[{21, -98, -34, 616, -532, -62, 98, -7, -1}, {0, 0, 0, 10, 214, 3491, 52001, 748788, 10636260}, 30] (* Jean-François Alcover, Feb 17 2016 *)
-
PARI
concat(vector(3), Vec((x^4+2*x^3-23*x^2+4*x+10)*x^3 / ((x-1) * (x^2+14*x-1) * (x^2-2*x-1) * (x^2+2*x-1) * (x^2-6*x+1)) + O(x^30))) \\ Colin Barker, Feb 17 2016
Formula
G.f.: (x^4+2*x^3-23*x^2+4*x+10)*x^3 / ((x-1) * (x^2+14*x-1) * (x^2-2*x-1) * (x^2+2*x-1) * (x^2-6*x+1)). - Alois P. Heinz, Jun 20 2012