cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213806 Number of minimal coprime labelings for the complete bipartite graph K_{n,n}.

Original entry on oeis.org

1, 1, 7, 3, 1, 3, 4, 5, 1, 9, 1, 1, 39, 2, 46, 16, 42, 68, 1, 175, 1, 5, 50, 1, 627, 1256, 1177, 10, 1860, 7144, 15, 170, 27156, 178, 64, 2, 6335, 6334, 15592, 4522, 3230, 113926, 99010, 72256, 114606, 199042, 1, 198518, 151036, 236203, 8557, 26542, 21388
Offset: 1

Views

Author

Alois P. Heinz, Jun 20 2012

Keywords

Comments

A minimal coprime labeling for K_{n,n} uses two disjoint n-subsets of {1,...,m} with minimal m = A213273(n) >= 2*n as labels for the two disjoint vertex sets such that labels of adjacent vertices are relatively prime. One of the label sets contains m.

Examples

			a(1) = 1: the two label sets are {{1}, {2}} with m=2.
a(2) = 1: {{1,3}, {2,4}} with m=4.
a(3) = 7: {{2,4,5}, {1,3,7}}, {{1,3,5}, {2,4,7}}, {{2,3,4}, {1,5,7}}, {{2,3,6}, {1,5,7}}, {{2,4,6}, {1,5,7}}, {{3,4,6}, {1,5,7}}, {{1,2,4}, {3,5,7}}.
a(4) = 3: {{2,4,7,8}, {1,3,5,9}}, {{2,4,5,8}, {1,3,7,9}}, {{1,2,4,8}, {3,5,7,9}}.
a(5) = 1: {{2,4,5,8,10}, {1,3,7,9,11}}.
a(21) = 1: {{2,4,5,8,10,11,16,20,22,23,25,29,31,32,40,44,46,50,55,58,62}, {1,3,7,9,13,17,19,21,27,37,39,41,43,47,49,51,53,57,59,61,63}}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, t, s) option remember;
          `if`(nops(s)>=t and k>=t, binomial(nops(s), t),
          `if`(n<1, 0, b(n-1, k, t, s)+ b(n-1, k+1, t,
          select(x-> x<>n and igcd(n, x)=1, s))))
        end:
    g:= proc(n) option remember; local m, r;
          for m from `if`(n=1, 2, g(n-1)[1]) do
            r:= b(m-1, 1, n, select(x-> igcd(m, x)=1, {$1..m-1}));
            if r>0 then break fi
          od; [m, r]
        end:
    a:= n-> g(n)[2]:
    seq(a(n), n=1..11);
  • Mathematica
    b[n_, k_, t_, s_] := b[n, k, t, s] = If[Length[s] >= t && k >= t, Binomial[Length[s], t], If[n < 1, 0, b[n - 1, k, t, s] + b[n - 1, k + 1, t, Select[s, # != n && GCD[n, #] == 1 &]]]];
    g[n_] := g[n] = Module[{m, r}, For[ m = If[n == 1, 2, g[n - 1][[1]] ], True, m++, r = b[m - 1, 1, n, Select[Range[1, m - 1], GCD[m, #] == 1 &]]; If [r > 0,  Break[]]]; {m, r}];
    a[n_] := a[n] = g[n][[2]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 18}] (* Jean-François Alcover, Nov 08 2017, after Alois P. Heinz *)

Formula

a(A284875(n)) = 1. - Jonathan Sondow, May 21 2017

Extensions

Terms a(24) and beyond from Kevin Cuadrado, Dec 01 2020