cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213809 Position of the maximum element in the simple continued fraction of Fibonacci(n+1)^5/Fibonacci(n)^5.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 3, 3, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 7, 7, 5, 7, 7, 7, 7, 7, 7, 7, 9, 9, 7, 9, 9, 9, 9, 9, 9, 9, 11, 11, 9, 11, 11, 11, 11, 11, 11, 11, 13, 13, 11, 13, 13, 13, 13, 13, 13, 13, 15, 15, 13, 15, 15, 15, 15, 15, 15, 15, 17, 17, 15, 17, 17, 17, 17, 17, 17, 17, 19, 19, 17, 19, 19, 19, 19, 19, 19, 19, 21, 21, 19, 21, 21, 21, 21, 21, 21, 21, 23, 23, 21, 23, 23, 23, 23, 23, 23, 23
Offset: 1

Views

Author

Art DuPre, Jun 20 2012

Keywords

Comments

The maximum elements themselves are in A113506.
The fractions F(n+1)^5/F(n)^5 are 1, 32, 243/32, 3125/243,... (see A056572). The continued fractions are [1], [32], [7,1,1,2,6], [12,1,6,6,1,4], [10,2,17,17,1,4]..., and for the first 4 of these the maximum element is the first, for the 5th of these the maximum element is the third.

Examples

			The continued fraction of the fraction corresponding to [1,1,1,1,1,1,1,1,1,1,1,1,1]^5 is
[11,11,7,1,39282,2,5,11,11,1,11,11] and the maximum occurs at place 5, which according to the formula, should be 3+2k, and since 13=10k+3, k=1 and 3+2k=3+2=5.
		

Programs

  • Maple
    A213809 := proc(n)
            local c,a,i;
            (combinat[fibonacci](n+1)/combinat[fibonacci](n))^5 ;
            c := numtheory[cfrac](%,quotients) ;
            a := 1 ;
            for i from 2 to nops(c) do
                    if op(i,c) > op(a,c) then
                            a := i ;
                    end if;
            end do:
            a ;
    end proc: # R. J. Mathar, Jul 06 2012

Formula

a(10k+m)=3+2k if m=0,1,3,4,5,6,7,8,9, k>0.
a(10k+2)=1+2k, k>0.