A213819 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 3*n-4+3*h, n>=1, h>=1, and ** = convolution.
2, 9, 5, 24, 18, 8, 50, 42, 27, 11, 90, 80, 60, 36, 14, 147, 135, 110, 78, 45, 17, 224, 210, 180, 140, 96, 54, 20, 324, 308, 273, 225, 170, 114, 63, 23, 450, 432, 392, 336, 270, 200, 132, 72, 26, 605, 585, 540, 476, 399, 315
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 2....9....24....50....90....147 5....18...42....80....135...210 8....27...60....110...180...273 11...36...78....140...225...336 14...45...96....170...270...399 17...54...114...200...315...462
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
Crossrefs
Cf. A212500
Programs
-
Mathematica
b[n_]:=n;c[n_]:=3n-1; t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] r[n_]:=Table[t[n,k],{k,1,60}] (* A213819 *) Table[t[n,n],{n,1,40}] (* A213820 *) d/2 (* A002414 *) s[n_]:=Sum[t[i,n+1-i],{i,1,n}] Table[s[n],{n,1,50}] (* A153978 *) s1/2 (* A001296 *)
Formula
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x(3*n-1 - (3*n-4)*x) and g(x) = (1-x)^4.
Comments