A213821 Rectangular array: (row n) = b**c, where b(h) = 3*h-1, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.
2, 9, 4, 24, 16, 6, 50, 39, 23, 8, 90, 76, 54, 30, 10, 147, 130, 102, 69, 37, 12, 224, 204, 170, 128, 84, 44, 14, 324, 301, 261, 210, 154, 99, 51, 16, 450, 424, 378, 318, 250, 180, 114, 58, 18, 605, 576, 524, 455, 375, 290, 206
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 2….9….24…50….90 4….16…39…76…130 6….23…54…102…170 8….30…69…128…210 10…37…84…154…250 12…44…99…180…290
Crossrefs
Cf. A212500
Programs
-
Mathematica
b[n_]:=3n-1;c[n_]:=n; t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] r[n_]:=Table[t[n,k],{k,1,60}] (* A213821 *) Table[t[n,n],{n,1,40}] (* A033431 *) s[n_]:=Sum[t[i,n+1-i],{i,1,n}] Table[s[n],{n,1,50}] (* A176060 *)
Formula
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(2*n - (n-2)*x - (n-1)*x^2) and g(x) = (1-x)^4.
Comments