A213824 Antidiagonal sums of the convolution array A213822.
4, 30, 114, 310, 690, 1344, 2380, 3924, 6120, 9130, 13134, 18330, 24934, 33180, 43320, 55624, 70380, 87894, 108490, 132510, 160314, 192280, 228804, 270300, 317200, 369954, 429030, 494914, 568110, 649140
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A213822.
Programs
-
Mathematica
(See A213822.)
-
PARI
a(n) = n*(3*n^3 + 6*n^2 + 5*n + 2)/4 \\ Charles R Greathouse IV, Feb 09 2017
Formula
a(n) = (2*n + 5*n^2 + 6*n^3 + 3*n^4)/4 = n*(1 + n)*(2 + 3*n + 3*n^2)/4.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: f(x)/g(x), where f(x) = 2*x*(2 + 5*x + 2*x^2) and g(x) = (1-x)^5.
a(n) = Sum_{i=1..n} i*(3*i^2+1). - Bruno Berselli, Feb 09 2017
Comments