cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213825 Rectangular array: (row n) = b**c, where b(h) = 3*h-1, c(h) = 3*n-5+3*h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

2, 13, 8, 42, 34, 14, 98, 87, 55, 20, 190, 176, 132, 76, 26, 327, 310, 254, 177, 97, 32, 518, 498, 430, 332, 222, 118, 38, 772, 749, 669, 550, 410, 267, 139, 44, 1098, 1072, 980, 840, 670, 488, 312, 160, 50, 1505, 1476, 1372
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Comments

Principal diagonal: A213826
Antidiagonal sums: A213827
Row 1, (2,5,8,13,...)**(1,4,7,10,13,...): (3*k^2 + k)/2
Row 2, (2,5,8,13,...)**(4,7,10,13,...): (3*k^3 + 9*k^2 - 2*k)/2
Row 3, (2,5,8,13,...)**(7,10,13,16,...): (3*k^3 + 18*k^2 - 5*k)/2
For a guide to related arrays, see A212500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
2....13....42....98....190
8....34....87....176...310
14...55....132...254...430
20...76....177...332...550
26...97....222...410...670
32...118...267...488...790
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=3n-1;c[n_]:=3n-2;
    t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
    TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
    Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
    r[n_]:=Table[t[n,k],{k,1,60}] (* A213825 *)
    d=Table[t[n,n],{n,1,40}] (* A213826 *)
    d/2 (* A024215 *)
    s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
    s1=Table[s[n],{n,1,50}] (* A213827 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*((3*n-1) + (3*n+2)*x - (6*n-8)*x^2) and g(x) = (1-x)^4.