A213825 Rectangular array: (row n) = b**c, where b(h) = 3*h-1, c(h) = 3*n-5+3*h, n>=1, h>=1, and ** = convolution.
2, 13, 8, 42, 34, 14, 98, 87, 55, 20, 190, 176, 132, 76, 26, 327, 310, 254, 177, 97, 32, 518, 498, 430, 332, 222, 118, 38, 772, 749, 669, 550, 410, 267, 139, 44, 1098, 1072, 980, 840, 670, 488, 312, 160, 50, 1505, 1476, 1372
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 2....13....42....98....190 8....34....87....176...310 14...55....132...254...430 20...76....177...332...550 26...97....222...410...670 32...118...267...488...790
Links
- Clark Kimberling, Antidiagonals n = 1..80, flattened
Crossrefs
Cf. A212500
Programs
-
Mathematica
b[n_]:=3n-1;c[n_]:=3n-2; t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] r[n_]:=Table[t[n,k],{k,1,60}] (* A213825 *) d=Table[t[n,n],{n,1,40}] (* A213826 *) d/2 (* A024215 *) s[n_]:=Sum[t[i,n+1-i],{i,1,n}] s1=Table[s[n],{n,1,50}] (* A213827 *)
Formula
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*((3*n-1) + (3*n+2)*x - (6*n-8)*x^2) and g(x) = (1-x)^4.
Comments