A213826
Principal diagonal of the convolution array A213825.
Original entry on oeis.org
2, 34, 132, 332, 670, 1182, 1904, 2872, 4122, 5690, 7612, 9924, 12662, 15862, 19560, 23792, 28594, 34002, 40052, 46780, 54222, 62414, 71392, 81192, 91850, 103402, 115884, 129332, 143782, 159270, 175832, 193504, 212322, 232322, 253540, 276012, 299774
Offset: 1
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A213827
a(n) = n^2*(n+1)*(3*n+1)/4.
Original entry on oeis.org
0, 2, 21, 90, 260, 600, 1197, 2156, 3600, 5670, 8525, 12342, 17316, 23660, 31605, 41400, 53312, 67626, 84645, 104690, 128100, 155232, 186461, 222180, 262800, 308750, 360477, 418446, 483140, 555060, 634725, 722672, 819456, 925650, 1041845, 1168650, 1306692
Offset: 0
a(7) = 1*(7^2+1) + 2*(7^2+2^2) + 3*(7^2+3^2) + 4*(7^2+4^2) + 5*(7^2+5^2) + 6*(7^2+6^2) + 7*(7^2+7^2) = 2156. [_Bruno Berselli_, Aug 25 2014]
Showing 1-3 of 3 results.
Comments