A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A092867
Number of regions in an equilateral triangular figure formed by the straight line segments connecting all vertices and all points that divide the sides into n equal parts.
Original entry on oeis.org
1, 12, 75, 252, 715, 1572, 3109, 5676, 9291, 14556, 22081, 32502, 44935, 62868, 83286, 108384, 140152, 181710, 225565, 282978, 342792, 415614, 502318, 606642, 708505, 839874, 983007, 1141416, 1315102, 1529526, 1733476, 1994550, 2259420, 2559990, 2878053, 3237414, 3593521, 4047906, 4510590, 5002350, 5506918, 6128100, 6704800, 7414518, 8113992, 8858622, 9682927, 10626774, 11478142, 12519492
Offset: 1
a(2)=12 because the 6 line segments mutually connecting the vertices and the mid-side nodes form 12 congruent right triangles of two different sizes.
a(3)=75: 48 triangles, 24 quadrilaterals and 3 pentagons are formed. See pictures at Pfoertner link.
- Hugo Pfoertner, Intersections of diagonals in polygons of triangular shape.
- Cynthia Miaina Rasamimanananivo and Max Alekseyev, Sage program for this sequence
- Scott R. Shannon, Triangle regions for n = 2.
- Scott R. Shannon, Triangle regions for n = 3.
- Scott R. Shannon, Triangle regions for n = 4.
- Scott R. Shannon, Triangle regions for n = 5.
- Scott R. Shannon, Triangle regions for n = 6.
- Scott R. Shannon, Triangle regions for n = 7.
- Scott R. Shannon, Triangle regions for n = 8.
- Scott R. Shannon, Triangle regions for n = 9.
- Scott R. Shannon, Triangle regions for n = 10.
- Scott R. Shannon, Triangle regions for n = 11.
- Scott R. Shannon, Triangle regions for n = 12.
- Scott R. Shannon, Triangle regions for n = 13.
- Scott R. Shannon, Triangle regions for n = 14.
- Scott R. Shannon, Triangle regions for n = 9, random distance-based coloring.
- Scott R. Shannon, Triangle regions for n = 12, random distance-based coloring
- Index entries for sequences related to stained glass windows
- Sequences formed by drawing all diagonals in regular polygon
Cf.
A092866 (number of intersections),
A274585 (number of points both inside and on the triangle sides),
A274586 (number of edges),
A331911 (number of n-gons).
Cf.
A092098 (regions in triangle cut by line segments connecting vertices with subdivision points on opposite side),
A006533 (regions formed by all diagonals in regular n-gon),
A002717 (triangles in triangular matchstick arrangement).
A274586
Number of edges formed by sides and straight "chords" in a right triangle when each side is divided by vertices into n equal segments.
Original entry on oeis.org
3, 21, 132, 429, 1272, 2826, 5640, 10461, 17094, 26847, 41046, 61041, 84051, 118974, 157209, 204393, 264855, 346524, 428880, 541683, 654087, 793611, 961179, 1167468, 1357515, 1615209, 1891980, 2198019, 2530275, 2957808, 3341439, 3860652, 4371006, 4959636, 5572167, 6277722, 6950064, 7859406, 8763780, 9722571, 10687506, 11934912, 13029834, 14450598, 15805026, 17250795, 18863397, 20763204, 22372839, 24450474
Offset: 1
A092866
Number of intersections inside an equilateral triangular figure formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts. If three or more lines meet at an interior point this intersection is counted only once.
Original entry on oeis.org
0, 4, 49, 166, 543, 1237, 2511, 4762, 7777, 12262, 18933, 28504, 39078, 56065, 73879, 95962, 124653, 164761, 203259, 258646, 311233, 377932, 458793, 560755, 648936, 775258, 908893, 1056520, 1215087, 1428193, 1607871, 1866007, 2111488, 2399545, 2694010, 3040201, 3356433, 3811387, 4253074, 4720102, 5180466, 5806687, 6324906, 7035949, 7690900, 8392036, 9180330, 10136287, 10894551, 11930833
Offset: 1
a(2)=4 because there are 3 intersection points between the triangle medians and the line segments connecting the midpoints of the sides plus the intersection of the 3 medians at the centroid.
Cf.
A092867 (regions formed by the diagonals),
A274585 (points both inside and on the triangle sides),
A274586 (edges).
Cf.
A006561 (number of intersections of diagonals of regular n-gon),
A091908 (intersections between line segments connecting vertices with subdivision points on opposite side).
-
Inter:= proc(p1x,p1y,p2x,p2y,q1x,q1y,q2x,q2y)
local det,x,y;
det:= p1x*q1y-p1x*q2y-p1y*q1x+p1y*q2x-p2x*q1y+p2x*q2y+p2y*q1x-p2y*q2x;
if det = 0 then return NULL fi;
x:= (p1x*p2y*q1x-p1x*p2y*q2x-p1x*q1x*q2y+p1x*q1y*q2x-p1y*p2x*q1x+p1y*p2x*q2x+p2x*q1x*q2y-p2x*q1y*q2x)/det;
y:= (p1x*p2y*q1y-p1x*p2y*q2y-p1y*p2x*q1y+p1y*p2x*q2y-p1y*q1x*q2y+p1y*q1y*q2x+p2y*q1x*q2y-p2y*q1y*q2x)/det;
if x >0 and y > 0 and x + y < 1 then [x,y]
else NULL
fi
end proc:
F:= proc(n) local A,B,C,Pairs,Pts;
A:= [seq([j/n,0],j=0..n)];
B:= [seq([0,j/n],j=0..n)];
C:= [seq([j/n,1-j/n],j=0..n)];
Pairs:= [seq(seq([A[i],B[j]],i=2..n+1),j=2..n+1),
seq(seq([A[i],C[j]],i=1..n),j=1..n),
seq(seq([B[i],C[j]],i=1..n),j=2..n+1)];
Pts:= {seq(seq(Inter(op(Pairs[i][1]),op(Pairs[i][2]),op(Pairs[j][1]),op(Pairs[j][2])),j=1..i-1),i=2..nops(Pairs))};
nops(Pts);
end proc:
map(F, [$1..20]); # Robert Israel, Jun 30 2016
-
Inter[{p1x_, p1y_}, {p2x_, p2y_}, {q1x_, q1y_}, {q2x_, q2y_}] := Module[ {det, x, y}, det = p1x q1y - p1x q2y - p1y q1x + p1y q2x - p2x q1y + p2x q2y + p2y q1x - p2y q2x; If[det == 0, Return[Nothing]]; x = (p1x p2y q1x - p1x p2y q2x - p1x q1x q2y + p1x q1y q2x - p1y p2x q1x + p1y p2x q2x + p2x q1x q2y - p2x q1y q2x)/det; y = (p1x p2y q1y - p1x p2y q2y - p1y p2x q1y + p1y p2x q2y - p1y q1x q2y + p1y q1y q2x + p2y q1x q2y - p2y q1y q2x)/det; If[x > 0 && y > 0 && x + y < 1, {x, y}, Nothing]];
F[n_] := F[n] = Module[{A, B, K, Pairs, Pts}, A = Table[{j/n, 0}, {j, 0, n}]; B = Table[{0, j/n}, {j, 0, n}]; K = Table[{j/n, 1 - j/n}, {j, 0, n}]; Pairs = {Table[Table[{A[[i]], B[[j]]}, {i, 2, n+1}], {j, 2, n+1}], Table[Table[{A[[i]], K[[j]]}, {i, 1, n}], {j, 1, n}], Table[Table[ {B[[i]], K[[j]]}, {i, 1, n}], {j, 2, n+1}]} // Flatten[#, 2]&; Pts = Table[Table[Inter[Pairs[[i, 1]], Pairs[[i, 2]], Pairs[[j, 1]], Pairs[[j, 2]]], {j, 1, i-1}], {i, 2, Length[Pairs]}]; Flatten[Pts, 1] // Union // Length];
Table[Print[n, " ", F[n]]; F[n], {n, 1, 20}] (* Jean-François Alcover, Apr 11 2019, after Robert Israel *)
A213825
Rectangular array: (row n) = b**c, where b(h) = 3*h-1, c(h) = 3*n-5+3*h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
2, 13, 8, 42, 34, 14, 98, 87, 55, 20, 190, 176, 132, 76, 26, 327, 310, 254, 177, 97, 32, 518, 498, 430, 332, 222, 118, 38, 772, 749, 669, 550, 410, 267, 139, 44, 1098, 1072, 980, 840, 670, 488, 312, 160, 50, 1505, 1476, 1372
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
2....13....42....98....190
8....34....87....176...310
14...55....132...254...430
20...76....177...332...550
26...97....222...410...670
32...118...267...488...790
-
b[n_]:=3n-1;c[n_]:=3n-2;
t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
r[n_]:=Table[t[n,k],{k,1,60}] (* A213825 *)
d=Table[t[n,n],{n,1,40}] (* A213826 *)
d/2 (* A024215 *)
s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
s1=Table[s[n],{n,1,50}] (* A213827 *)
Showing 1-5 of 5 results.
Comments