A213838 Rectangular array: (row n) = b**c, where b(h) = 4*h-3, c(h) = 2*n-3+2*h, n>=1, h>=1, and ** = convolution.
1, 8, 3, 29, 20, 5, 72, 59, 32, 7, 145, 128, 89, 44, 9, 256, 235, 184, 119, 56, 11, 413, 388, 325, 240, 149, 68, 13, 624, 595, 520, 415, 296, 179, 80, 15, 897, 864, 777, 652, 505, 352, 209, 92, 17, 1240, 1203, 1104, 959, 784
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 1....8....29....72....145 3....20...59....128...235 5....32...89....184...325 7....44...119...240...415 9....56...149...296...505 11...68...179...352...595
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
Crossrefs
Cf. A212500.
Programs
-
Mathematica
b[n_]:=4n-3; c[n_]:=2n-1; t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] r[n_]:=Table[t[n,k],{k,1,60}] (* A213838 *) Table[t[n,n],{n,1,40}] (* A213839 *) s[n_]:=Sum[t[i,n+1-i],{i,1,n}] Table[s[n],{n,1,50}] (* A213840 *)
Formula
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(2*n-1 + 4*n*x - (6*n-9)*x^2) and g(x) = (1-x)^4.
Comments