A213839
Principal diagonal of the convolution array A213838.
Original entry on oeis.org
1, 20, 89, 240, 505, 916, 1505, 2304, 3345, 4660, 6281, 8240, 10569, 13300, 16465, 20096, 24225, 28884, 34105, 39920, 46361, 53460, 61249, 69760, 79025, 89076, 99945, 111664, 124265, 137780, 152241, 167680
Offset: 1
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A100178
Structured hexagonal diamond numbers (vertex structure 5).
Original entry on oeis.org
1, 8, 29, 72, 145, 256, 413, 624, 897, 1240, 1661, 2168, 2769, 3472, 4285, 5216, 6273, 7464, 8797, 10280, 11921, 13728, 15709, 17872, 20225, 22776, 25533, 28504, 31697, 35120, 38781, 42688, 46849, 51272, 55965, 60936, 66193, 71744, 77597, 83760, 90241, 97048, 104189
Offset: 1
James A. Record (james.record(AT)gmail.com), Nov 07 2004
-
[(1/6)*(8*n^3-6*n^2+4*n): n in [1..40]]; // Vincenzo Librandi, Aug 03 2011
-
LinearRecurrence[{4, -6, 4, -1}, {1, 8, 29, 72}, 50] (* Paolo Xausa, Aug 06 2025 *)
A213840
a(n) = n*(1 + n)*(3 - 4*n + 4*n^2)/6.
Original entry on oeis.org
1, 11, 54, 170, 415, 861, 1596, 2724, 4365, 6655, 9746, 13806, 19019, 25585, 33720, 43656, 55641, 69939, 86830, 106610, 129591, 156101, 186484, 221100, 260325, 304551, 354186, 409654, 471395, 539865, 615536, 698896, 790449, 890715, 1000230, 1119546, 1249231
Offset: 1
- Clark Kimberling, Table of n, a(n) for n = 1..200
- Teofil Bogdan and Mircea Rus, Numărând dreptunghiuri pe foaia de matematică (in Romanian). Gazeta Matematică, seria B, 2020 (6-7-8), pp. 281-288.
- Teofil Bogdan and Mircea Dan Rus, Counting the lattice rectangles inside Aztec diamonds and square biscuits, arXiv:2007.13472 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n*(1+n)*(3-4*n+4*n^2)/6: n in [1..60]]; // Vincenzo Librandi, Aug 01 2015
-
A213840:=n->n*(1 + n)*(3 - 4*n + 4*n^2)/6: seq(A213840(n), n=1..50); # Wesley Ivan Hurt, Sep 16 2017
-
Table[n (1 + n) (3 - 4 n + 4 n^2)/6, {n, 50}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 11, 54, 170, 415}, 40] (* Vincenzo Librandi, Aug 01 2015 *)
Showing 1-4 of 4 results.
Comments