cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213849 Rectangular array: (row n) = b**c, where b(h) = ceiling(h/2), c(h) = floor(n-1+h), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 8, 6, 4, 2, 14, 11, 9, 5, 3, 20, 17, 14, 10, 6, 3, 30, 26, 23, 17, 13, 7, 4, 40, 36, 32, 26, 20, 14, 8, 4, 55, 50, 46, 38, 32, 23, 17, 9, 5, 70, 65, 60, 52, 44, 35, 26, 18, 10, 5, 91, 85, 80, 70, 62, 50, 41, 29, 21, 11, 6
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2012

Keywords

Comments

Principal diagonal: A049778.
Antidiagonal sums: A213850.
Row 1, (1,1,2,2,3,3,...)**(1,1,2,2,3,3,...).
Row 2, (1,1,2,2,3,3,...)**(1,2,2,3,3,4,...).
Row 3, (1,1,2,2,3,3,...)**(2,2,3,3,4,4,...).
For a guide to related arrays, see A212500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...2...5....8....14...20...30...40
1...3...6....11...17...26...36...50
2...4...9....14...23...32...46...60
2...5...10...17...26...38...52...70
3...6...13...20...32...44...62...80
		

Crossrefs

Cf. A212500.

Programs

  • Mathematica
    b[n_]:=Floor[(n+1)/2];c[n_]:=Floor[(n+1)/2];
    t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
    TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
    Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
    r[n_]:=Table[t[n,k],{k,1,60}]  (* A213849 *)
    d=Table[t[n,n],{n,1,50}] (* A049778 *)
    s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
    s1=Table[s[n],{n,1,50}] (* A213850 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(ceiling(n/2) + m(n)*x - floor(n/2)*x^2), where m(n) = (n+1 mod 2), and g(x) = (1+x)^2 *(1-x)^4.