A213863 Number of words w where each letter of the n-ary alphabet occurs 3 times and for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z.
1, 1, 7, 106, 2575, 87595, 3864040, 210455470, 13681123135, 1035588754375, 89575852312675, 8724157965777400, 945424197750836500, 112891958206958894500, 14733016566584898017500, 2086947723639167040631750, 318968341048949169038143375
Offset: 0
Keywords
Examples
a(0) = 1: the empty word. a(1) = 1: aaa. a(2) = 7: aaabbb, aababb, aabbab, abaabb, ababab, baaabb, baabab.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..320
- Cyril Banderier and Michael Wallner, Young tableaux with periodic walls: counting with the density method, Séminaire Lotharingien de Combinatoire XX, Proceedings of the 33rd Conference on Formal Power (2021) Article #YY.
- Michael Fuchs, Enumeration and Stochastic Properties of Tree-Child Networks, National Chengchi Univ. (Taipei 2023).
- Michael Fuchs, Guan-Ru Yu, and Louxin Zhang, On the Asymptotic Growth of the Number of Tree-Child Networks, arXiv:2003.08049 [math.CO], 2020.
Crossrefs
Row n=3 of A213275.
Formula
a(n) = Sum_{m>=1} b_{n,m} if n>0. Here, b_{n,m} satisfies b_{n,m}=(2*n+m-2)*Sum_{k=1..m} b_{n-1,k} for n>=2 and 1<=m<=n with initial conditions b_{n,m}=0 for nMichael Fuchs, Aug 05 2020
Comments