A213918 a(n) = smallest possible element of a set of n positive integers s_1, s_2, ..., s_n such that for i != j, |s_i - s_j| = gcd(s_i, s_j), where |x| denotes absolute value.
1, 1, 2, 6, 36, 210, 14976, 552720, 309582000
Offset: 1
Examples
Examples of sets for the first few cases: {1}, {1,2}, {2, 3, 4}, {6, 8, 9, 12}, {36, 40, 42, 45, 48}, {210, 216, 220, 224, 225, 240}, {14976, 14980, 14994, 15000, 15008, 15015, 15120}, {552720, 552825, 552960, 553000, 553014, 553140, 553280, 554400}, {309582000, 309583680, 309583800, 309583872, 309583890, 309584000, 309584025, 309584100, 309584160}.
Programs
-
Mathematica
ok[v_, n_] := v == Select[v, GCD[#, n] == Abs[n - #] &]; ric[p_, cc_, k_] := If[Length@p == k, sol = p; True, Block[{c = cc, x, r = False}, While[c != {}, x = First@c; c = Rest@c; If[p == Select[p, GCD[#, x] == Abs[x - #] &] && ric[Append[p, x], c, k], r = True; Break[]]]; r]]; a[k_] := Block[{n = 1, d}, While[Length[d = Divisors@n] < k - 1 || !ric[{n}, n + d, k], n++]; n]; Do[Print[n, " ", a[n], " ", sol], {n, 7}]
Extensions
Corrected (with Mathematica program) by Giovanni Resta, Mar 05 2013. Entry revised by N. J. A. Sloane, Mar 05 2013
a(8) from Robert Gerbicz, Mar 05 2013
a(9) from Robert Gerbicz, Mar 06 2013