A213940 Triangle with entry a(n,m) giving the number of bracelets of n beads (dihedral D_n symmetry) with n colors available for each bead, but only m distinct fixed colors, say c[1],...,c[m], are present, with m from {1,...,n} and n>=1.
1, 1, 1, 1, 1, 1, 1, 3, 2, 3, 1, 3, 6, 6, 12, 1, 7, 20, 26, 30, 60, 1, 8, 40, 93, 150, 180, 360, 1, 18, 106, 424, 633, 1050, 1260, 2520, 1, 22, 304, 1180, 3260, 5040, 8400, 10080, 20160, 1, 46, 731, 4844, 16212, 29244, 45360, 75600, 90720, 181440
Offset: 1
Examples
n\m 1 2 3 4 5 6 7 8 9 10 ... 1 1 2 1 1 3 1 1 1 4 1 3 2 3 5 1 3 6 6 12 6 1 7 20 26 30 60 7 1 8 40 93 150 180 360 8 1 18 106 424 633 1050 1260 2520 9 1 22 304 1180 3260 5040 8400 10080 20160 10 1 46 731 4844 16212 29244 45360 75600 90720 181440 ... a(5,3) = 2 + 4 = 6, from A213939(5,4) + A213939(5,5), because k(5,3,1) = 4 and p(5,3) = 2. a(2,1) = 1 because the partition [2] of n=2 with part number m=1 corresponds to the representative color multinomial (here monomial) c[1]^2 = c[1]*c[1], and there is one such representative bracelet. There is another bracelet color monomial in this class of n=2 colors where only m=1 color is active: c[2]*c[2]. See the triangle entry A213941(2,1)=2. The same holds for the necklace case. a(3,1) = 1 from the color monomial representative c[1]^3. This class has 2 other members: c[2]^3 and c[3]^3. See A213941(3,1)=3. The same holds for the necklace case. Like in the necklace case one has in general a(n,1)=1 and A213941(n,1) = n from the partition [n] providing the color signature and a representative c[1]^n. a(3,2) = 1 from the representative color multinomial c[1]^2*c[2] (from the m=2 partition [2,1] of n=3) leading to just one representative bracelet (and necklace) cyclic(112) (when one uses j for color c[j]). The whole class consists of A213941(3,2)=6 bracelets (or necklaces): cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332). a(3,3) = 1. The representative color multinomial is c[1]*c[2]*c[3] (from the m=3 partition [1,1,1]). There is only one bracelet cyclic(1,2,3) which constitutes already the whole class (A213941(3,3)=1). The necklace cyclic(1,3,2) becomes equivalent under D_3. a(4,2) = 3 from two representative color multinomials c[1]^3*c[2] and c[1]^2*c[2]^2 (from the two m=2 partitions of n=4: [3,1] and [2,2]). The first one has one representative bracelet, namely cyclic(1112), the second one leads to the two representative bracelets: cyclic(1122) and cyclic(1212). Together these are the 3 bracelets counted by a(4,2). The first color class c[.]^3*c[.] consists of 4*3=12 bracelets, when all 4 colors are used. The second one consists of 2*6=12 bracelets. Together they sum up to the 24 bracelets counted by A213941(4,2). In this example the necklace case does not differ from the bracelet one.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
PARI
Cyc(v)={my(s=vecsum(v)); sumdiv(gcd(v), d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s} CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v)); if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))} T(n,k)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [k,k]); t/2} for(n=1, 10, for(k=1,n, print1(T(n,k), ", ")); print); \\ Andrew Howroyd, Sep 26 2017
-
PARI
\\ faster version; here U is A226874 as vector of polynomials. U(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))} T(n)={my(t=U(n)); vector(n, n, vector(n, k, ((1/n)*sumdiv(n, d, eulerphi(n/d) * polcoeff(t[d+1], k)) + if(n%2, sum(d=0, (n-1)/2, binomial((n-1)/2, d)*polcoeff(t[d+1], (k-1))), polcoeff(t[n/2+1], k) + sum(d=0, n/2-1, binomial(n/2-1, d)*(2^d + if(d%2, 0, binomial(d, d/2)))*polcoeff(t[n/2-d], k-2))/2))/2))} { my(t=T(10)); for(n=1, #t, print(t[n])) } \\ Andrew Howroyd, Dec 22 2017
Comments