A213948 Triangle, by rows, generated from the INVERT transforms of (1, 1, 2, 4, 8, 16, ...).
1, 1, 1, 1, 2, 2, 1, 4, 4, 4, 1, 7, 10, 8, 8, 1, 12, 24, 20, 16, 16, 1, 20, 52, 56, 40, 32, 32, 1, 33, 112, 144, 112, 80, 64, 64, 1, 54, 238, 344, 320, 224, 160, 128, 128, 1, 88, 496, 828, 848, 640, 448, 320, 256, 256
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 1; 1, 2, 2; 1, 4, 4, 4; 1, 7, 20, 8, 8; 1, 12, 24, 20, 16, 16; 1, 20, 52, 56, 40, 32, 32; 1, 33, 112, 144, 112, 80, 64, 64; 1, 54, 238, 344, 320, 224, 160, 128, 128; 1, 88, 496, 828, 848, 640, 448, 320, 256, 256; ...
Programs
-
Maple
read("transforms") ; A213948i := proc(n,k) if n = 1 then L := [1,seq(0,i=0..k)] ; else L := [1,seq(2^i,i=0..n-2),seq(0,i=0..k)] ; end if; INVERT(L) ; op(k,%) ; end proc: A213948 := proc(n,k) if k = 1 then 1; else A213948i(k,n)-A213948i(k-1,n) ; end if; end proc: # R. J. Mathar, Jun 30 2012
Formula
Create an array in which the n-th row is the INVERT transform of the first n terms in the sequence (1, 1, 2, 4, 8, 16, 32, ...):
1, 1, 1, 1, 1, 1,
1, 2, 3, 5, 8, 13, (essentially A000045)
1, 2, 5, 9, 18, 37, (essentially A077947)
1, 2, 5, 13, 26, 57,
Terms of the n-th row of the triangle are the finite differences downwards the n-th column of this array.
Comments