A213954 Irregular array T(n,k) of the numbers of non-extendable (complete) non-self-adjacent simple paths starting at each of a minimal subset of nodes within a square lattice bounded by rectangles with nodal dimensions n and 3, n >= 2.
3, 4, 8, 6, 6, 8, 17, 14, 12, 10, 36, 32, 25, 18, 20, 12, 77, 68, 51, 36, 38, 20, 164, 142, 106, 72, 72, 38, 64, 28, 347, 298, 225, 146, 142, 74, 109, 46, 732, 628, 476, 302, 294, 148, 197, 82, 168, 64, 1543, 1324, 1003, 632, 614, 304, 385, 156, 277, 100, 3252, 2790, 2112, 1328, 1284, 634, 777, 312, 504, 174, 414, 136
Offset: 2
Examples
When n = 2, the number of times (NT) each node in the rectangle is the start node (SN) of a complete non-self-adjacent simple path is SN 0 1 2 3 4 5 NT 3 4 3 3 4 3 To limit duplication, only the top left-hand corner 3 and the 4 to its right are stored in the sequence, i.e. T(2,1) = 3 and T(2,2) = 4.
Links
- C. H. Gribble, Computed characteristics of complete non-self-adjacent paths in a square lattice bounded by various sizes of rectangle.
- C. H. Gribble, Computes characteristics of complete non-self-adjacent paths in square and cubic lattices bounded by various sizes of rectangle and rectangular cuboid respectively.
Formula
It appears that:
T(n,1) - 2*T(n-1,1) - T(n-4,1) - 2 = 0, n >= 6
T(n,2) - 2*T(n-1,2) - T(n-4,1) = 0, n >= 6
T(n,3) - 2*T(n-1,3) - T(n-4,1) = 0, n >= 10
T(n,4) - 2*T(n-1,4) - T(n-4,1) + 8 = 0, n >= 7
Comments