cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213977 Number of n X n matrices with entries 0 and 1 and no 2 X 2 submatrix of form [ 1 1; 0 0 ].

Original entry on oeis.org

1, 2, 14, 200, 3536, 67472, 1423168, 34048352, 927156224, 28490354432, 976839578624, 36983803914752, 1532587515049984, 68997562105014272, 3353462146559209472, 175003916852177604608, 9760034505494167420928, 579311442062239341412352, 36462558160899681920745472, 2425761875540844266778656768
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2012

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; w = ProductLog[-x E^x]; CoefficientList[-2w/(x(w+1)) + (x^2-1) E^(2x) - 2x(x+1) E^(4x) + O[x]^terms, x]*Range[0, terms-1]! (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
  • PARI
    N=66; x='x+O('x^N);
    W(x)=sum(n=1,N, (-n)^(n-1)*x^n/n! );
    w=W(-x*exp(x));
    egf=-2*w/(x*(1+w)) + (x^2-1)*exp(2*x)-2*x*(x+1)*exp(4*x);
    Vec(serlaplace(egf))
    /* Joerg Arndt, Jul 19 2012 */

Formula

Ju and Seo give an e.g.f. (see PARI code).

Extensions

More terms from Joerg Arndt, Jul 19 2012