cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A014235 Number of n X n matrices with entries 0 and 1 and no 2 X 2 submatrix of form [ 1 1; 1 0 ].

Original entry on oeis.org

1, 2, 12, 128, 2100, 48032, 1444212, 54763088, 2540607060, 140893490432, 9170099291892, 690117597121328, 59318536757456340, 5763381455631211232, 627402010180980401652, 75942075645205885599248, 10153054354133705795859540, 1490544499134409408040599232
Offset: 0

Views

Author

Keywords

Examples

			For n = 2 the 12 matrices are all the 2 X 2 0-1 matrices except
[1 1]  [1 0]  [0 1]  [1 1]
[1 0], [1 1], [1 1], [0 1]. - _Robert Israel_, Feb 19 2015
		

Crossrefs

Row sums of A334689.

Programs

  • Maple
    f:= n -> add(k!*combinat:-stirling2(n+1,k+1)^2, k = 0 .. n):
    seq(f(n),n=0..30); # Robert Israel, Feb 19 2015
  • Mathematica
    Table[Sum[StirlingS2[n+1, k+1]^2k!, {k, 0, n}], {n, 0, 100}] (* Emanuele Munarini, Jul 04 2011 *)
  • Maxima
    makelist(sum(stirling2(n+1, k+1)^2*k!, k, 0, n), n, 0, 24); /* Emanuele Munarini, Jul 04 2011 */
    
  • PARI
    a(n) = sum(k=0, n, k! * stirling(n+1, k+1, 2)^2); \\ Michel Marcus, Feb 21 2015

Formula

a(n) = Sum_{k=0..n} k! * Stirling2(n+1, k+1)^2.

Extensions

a(0)=1 added by Emanuele Munarini, Jul 04 2011

A383255 Number of n X n {0,1,2,3} matrices having no 1's to the right of any 0's and no 3's above any 2's.

Original entry on oeis.org

1, 4, 194, 107080, 672498596, 48104236145168, 39202958861329453384, 364022757339778569993689888, 38513979937284562006371342202842000, 46429021191757554279412904483559912259714112, 637737721080296383894709847744103523361428384973270816
Offset: 0

Views

Author

John Tyler Rascoe, Apr 20 2025

Keywords

Comments

These are matrices with no [0,1] or [3] submatrices.
[2]

Examples

			The 3 X 3 matrices below are counted under a(3) = 107080:
 [0,0,0] [1,0,2] [2,3,2]
 [0,0,0] [1,0,3] [3,3,3]
 [0,0,0],[0,2,3],[3,3,3].
		

Crossrefs

Programs

  • Python
    # see links

Formula

a(n) <= A060757(n).

Extensions

a(5)-a(10) from Bert Dobbelaere, Apr 23 2025
Showing 1-2 of 2 results.