cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A023997 Number of block permutations on an n-set.

Original entry on oeis.org

1, 1, 3, 25, 339, 6721, 179643, 6166105, 262308819, 13471274401, 818288740923, 57836113793305, 4693153430067699, 432360767273547841, 44794795522199781243, 5176959027946049635225, 662704551840482536170579
Offset: 0

Views

Author

Des FitzGerald (D.FitzGerald(AT)utas.edu.au)

Keywords

Comments

A block permutation of a set X is a bijection between two quotient sets of X (of necessarily equal rank).
Number of labeled partitions of (n,n) into pairs (i,j) where there are n black objects labeled 1..n and n white objects labeled 1..n. Each partition must have at least one black object and at least one white object. - Christian G. Bower, Jun 03 2005

Examples

			For n=3, there are the 3! ordinary permutations (of rank 3), 18 block permutations of rank 2 (2! for each pair of partitions of rank 2) and the single rank 1 one.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS2[n,k]^2k!,{k,0,n}],{n,0,100}] (* Emanuele Munarini, Jul 04 2011 *)
  • Maxima
    makelist(sum(stirling2(n,k)^2*k!,k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
    
  • PARI
    a(n) = if (n==0, 1, sum(k=1, n, k!*stirling(n, k, 2)^2)); \\ Michel Marcus, Jun 18 2019

Formula

a(0)=1, a(n) = Sum_{k=1..n} k! * S2(n,k)^2, S2(n,k) are the Stirling numbers of the second kind.

Extensions

More terms from Christian G. Bower, Jun 03 2005

A265417 Rectangular array T(n,m), read by upward antidiagonals: T(n,m) is the number of difunctional (regular) binary relations between an n-element set and an m-element set.

Original entry on oeis.org

2, 4, 4, 8, 12, 8, 16, 34, 34, 16, 32, 96, 128, 96, 32, 64, 274, 466, 466, 274, 64, 128, 792, 1688, 2100, 1688, 792, 128, 256, 2314, 6154, 9226, 9226, 6154, 2314, 256, 512, 6816, 22688, 40356, 48032, 40356, 22688, 6816, 512, 1024, 20194, 84706, 177466, 245554, 245554, 177466, 84706, 20194, 1024, 2048, 60072, 320168
Offset: 1

Views

Author

Jasha Gurevich, Dec 08 2015

Keywords

Comments

T(n,m) is the number of difunctional (regular) binary relations between an n-element set and an m-element set.
From Petros Hadjicostas, Feb 09 2021: (Start)
From Knopfmacher and Mays (2001): "Let G be a labeled graph, with edge set E(G) and vertex set V(G). A composition of G is a partition of V(G) into vertex sets of connected induced subgraphs of G." "We will denote by C(G) the number of distinct compositions that exist for a given graph G."
By Theorem 10 in Knofmacher and Mays (2001), T(n,m) = C(K_{n,m}) = Sum_{i=1..n+1} A341287(n,i)*i^m, where K_{n,m} is the complete bipartite graph with n+m vertices and n*m edges. For values of T(n,m), see the table on p. 10 of the paper.
Huq (2007) reproved the result using different methodology and derived the bivariate e.g.f. of T(n,m). (End)

Examples

			Array T(n,m) (with rows n >= 1 and columns m >= 1) begins:
    2      4      8      16       32        64        128         256 ...
    4     12     34      96      274       792       2314        6816 ...
    8     34    128     466     1688      6154      22688       84706 ...
   16     96    466    2100     9226     40356     177466      788100 ...
   32    274   1688    9226    48032    245554    1251128     6402586 ...
   64    792   6154   40356   245554   1444212    8380114    48510036 ...
  128   2314  22688  177466  1251128   8380114   54763088   354298186 ...
  256   6816  84706  788100  6402586  48510036  354298186  2540607060 ...
  512  20194 320168 3541066 33044432 281910994 2288754728 18082589146 ...
  ...
		

Crossrefs

Cf. A005056 (1st line or column ?), A014235 (diagonal ?), A341287.

Programs

  • Maple
    sum((Stirling2(m, i-1)*factorial(i)+Stirling2(m, i)*factorial(i+1)+Stirling2(m, i+1)*factorial(i+1))*Stirling2(n, i), i = 1 .. n)
  • PARI
    T(n, m) = sum(i=1,n, (stirling(m, i-1,2)*i! + stirling(m, i,2)*(i+1)! + stirling(m, i+1,2)*(i+1)!)*stirling(n, i,2)); \\ Michel Marcus, Dec 10 2015

Formula

T(n, m) = Sum_{i=1..n} (Stirling2(m, i-1)*i! + Stirling2(m, i)*(i+1)! + Stirling2(m, i+1)*(i+1)!)*Stirling2(n, i).
From Petros Hadjicostas, Feb 09 2021: (Start)
T(n,m) = Sum_{i=1..n+1} A341287(n,i)*i^m = Sum_{i=1..m+1} A341287(m,i)*i^n. (See Knopfmacher and Mays (2001) and Huq (2007).)
Bivariate e.g.f.: Sum_{n,m >= 1} T(n,m)*(x^n/n!)*(y^m/m!) = exp((exp(x) - 1)*(exp(y) - 1) + x + y) - exp(x) - exp(y) + 1. (This is a modification of Eq. (7) in Huq (2007), p. 4.) (End)

A111420 a(n) = Sum_{q=0..n} Stirling2(n+1,q)^2*q!.

Original entry on oeis.org

0, 1, 19, 315, 6601, 178923, 6161065, 262268499, 13470911521, 818285112123, 57836073876505, 4693152951066099, 432360761046527041, 44794795435021490043, 5176959026638375267225, 662704551819559746282579, 93384393940399990403502241, 14406589076081640590750974203
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2005

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(Stirling2(n+1,q)^2*q!, q=0..n):
    seq(a(n), n=0..19);  # Alois P. Heinz, May 11 2020
  • Mathematica
    Table[Sum[StirlingS2[n+1, k]^2 * k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 12 2018 *)

A213977 Number of n X n matrices with entries 0 and 1 and no 2 X 2 submatrix of form [ 1 1; 0 0 ].

Original entry on oeis.org

1, 2, 14, 200, 3536, 67472, 1423168, 34048352, 927156224, 28490354432, 976839578624, 36983803914752, 1532587515049984, 68997562105014272, 3353462146559209472, 175003916852177604608, 9760034505494167420928, 579311442062239341412352, 36462558160899681920745472, 2425761875540844266778656768
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2012

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; w = ProductLog[-x E^x]; CoefficientList[-2w/(x(w+1)) + (x^2-1) E^(2x) - 2x(x+1) E^(4x) + O[x]^terms, x]*Range[0, terms-1]! (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
  • PARI
    N=66; x='x+O('x^N);
    W(x)=sum(n=1,N, (-n)^(n-1)*x^n/n! );
    w=W(-x*exp(x));
    egf=-2*w/(x*(1+w)) + (x^2-1)*exp(2*x)-2*x*(x+1)*exp(4*x);
    Vec(serlaplace(egf))
    /* Joerg Arndt, Jul 19 2012 */

Formula

Ju and Seo give an e.g.f. (see PARI code).

Extensions

More terms from Joerg Arndt, Jul 19 2012

A334689 Triangle read by rows: T(n,k) (0 <= k <= n) = k!*(Stirling2(n,k)+(k+1)*Stirling2(n,k+1))^2.

Original entry on oeis.org

1, 1, 1, 1, 9, 2, 1, 49, 72, 6, 1, 225, 1250, 600, 24, 1, 961, 16200, 25350, 5400, 120, 1, 3969, 181202, 735000, 470400, 52920, 720, 1, 16129, 1866312, 17360406, 26460000, 8490720, 564480, 5040, 1, 65025, 18301250, 362237400, 1159593624, 840157920, 153679680, 6531840, 40320
Offset: 0

Views

Author

N. J. A. Sloane, May 11 2020

Keywords

Comments

This is the number of Boolean matrices of dimension n and rank k having a Moore-Penrose inverse (Kim-Roush, Th. 10).
Theorem 8 of the same Kim-Roush paper gives a formula for the number of Boolean matrices of dimension n and rank k having a minimum-norm g-inverse. Unfortunately the formula appears to produce negative numbers.

Examples

			Triangle begins:
1,
1, 1,
1, 9, 2,
1, 49, 72, 6,
1, 225, 1250, 600, 24,
1, 961, 16200, 25350, 5400, 120,
1, 3969, 181202, 735000, 470400, 52920, 720,
1, 16129, 1866312, 17360406, 26460000, 8490720, 564480, 5040,
...
		

Crossrefs

Columns k=0-2 give: A000012, A060867, 2*A129839(n+1).
Row sums give A014235.

Programs

  • Maple
    T := (n,k) -> k!*(Stirling2(n,k)+(k+1)*Stirling2(n,k+1))^2;
    r:=n->[seq(T(n,k),k=0..n)];
    for n from 0 to 12 do lprint(r(n)); od:

A383255 Number of n X n {0,1,2,3} matrices having no 1's to the right of any 0's and no 3's above any 2's.

Original entry on oeis.org

1, 4, 194, 107080, 672498596, 48104236145168, 39202958861329453384, 364022757339778569993689888, 38513979937284562006371342202842000, 46429021191757554279412904483559912259714112, 637737721080296383894709847744103523361428384973270816
Offset: 0

Views

Author

John Tyler Rascoe, Apr 20 2025

Keywords

Comments

These are matrices with no [0,1] or [3] submatrices.
[2]

Examples

			The 3 X 3 matrices below are counted under a(3) = 107080:
 [0,0,0] [1,0,2] [2,3,2]
 [0,0,0] [1,0,3] [3,3,3]
 [0,0,0],[0,2,3],[3,3,3].
		

Crossrefs

Programs

  • Python
    # see links

Formula

a(n) <= A060757(n).

Extensions

a(5)-a(10) from Bert Dobbelaere, Apr 23 2025
Showing 1-6 of 6 results.