A341287 Triangle read by rows: T(n,k) = Sum_{i=0..n-1} binomial(n-1, i)*T(n-1-i,k-1) - Sum_{i=1..n-1} binomial(n-1,i)*T(n-1-i,k) for 1 <= k <= n+1 with T(0,1) = 1 (and T(n,k) = 0 otherwise).
1, 0, 1, -1, 1, 1, -1, -2, 3, 1, 2, -9, 1, 6, 1, 9, -9, -25, 15, 10, 1, 9, 50, -104, -20, 50, 15, 1, -50, 267, -98, -364, 105, 119, 21, 1, -267, 413, 1163, -1610, -539, 574, 238, 28, 1, -413, -2180, 7569, -1511, -6636, 903, 1806, 426, 36, 1, 2180, -17731, 17491, 29580, -32570, -12957, 8757, 4500, 705, 45, 1
Offset: 0
Examples
Triangle T(n,k) with rows n >= 0 and columns 1 <= k <= n+1 begins: 1, 0, 1, -1, 1, 1, -1, -2, 3, 1, 2, -9, 1, 6, 1, 9, -9, -25, 15, 10, 1, 9, 50, -104, -20, 50, 15, 1, -50, 267, -98, -364, 105, 119, 21, 1, -267, 413, 1163, -1610, -539, 574, 238, 28, 1, -413, -2180, 7569, -1511, -6636, 903, 1806, 426, 36, 1, ...
Links
- Aminul Huq, Compositions of graphs revisited, The Electronic Journal of Combinatorics, Vol. 14 (2007), Article N15.
- A. Knopfmacher and M. E. Mays, Graph compositions I: Basic enumerations, Integers, Vol. 1 (2001), Article A4. (See p. 9 for the table and p. 8 for the recurrence.)
Programs
-
Maple
egf := k-> (exp(x)-1)^(k-1)/(k-1)!*exp(x-(exp(x)-1)): A341287 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n): seq(print(seq(A341287(n, k), k=1..n+1)), n=0..9); # Mélika Tebni, Apr 20 2022
Formula
Sum_{k=1..n+1} (-1)^(k-1)*T(n,k) = A309775(n) for n >= 0.
Sum_{k=1..n+1} (-m)^(k-1)*T(n,k) = A335977(n,m+1) for m >= 1 and n >= 0.
T(n,n+1) = 1 and T(n,n) = A000217(n-1) = n*(n-1)/2 for n >= 1.
T(n,1) = -A000587(n+1) for n >= 0 (complementary Bell numbers).
T(n,2) = -T(n+1,1) for n >= 1.
Bivariate e.g.f.-o.g.f: Sum_{n>=0,k>=1} T(n,k)*(x^n/n!)*y^k = y*exp((1 - y)*(1 -exp(x)) + x).
T(n,k) = Sum_{j=1..n+1} binomial(j - 1, k - 1)*(-1)^(j - k)*Stirling2(n + 1, j) for n >= 0 and 1 <= k <= n+1, where Stirling2(n,k) = A048993(n,k). (This is a modification of a formula in Section 4 of Huq (2007).)
From Mélika Tebni, Apr 20 2022: (Start)
T(n, k) = Sum_{j=0..n} A129334(n, j)*Stirling2(j+1, k) for n >= 0 and 1 <= k <= n+1.
E.g.f. column k: (exp(x) - 1)^(k-1) / (k-1)!*exp(x - (exp(x) - 1)), k >= 1. (End)
Comments