cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A265707 Rectangular array A read by upward antidiagonals: A(n,m) is the number of surjective difunctional (regular) binary relations between an n-element set and an m-element set.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 9, 19, 15, 1, 17, 49, 65, 31, 1, 33, 127, 225, 211, 63, 1, 65, 337, 749, 961, 665, 127, 1, 129, 919, 2505, 3991, 3969, 2059, 255, 1, 257, 2569, 8525, 16201, 20237, 16129, 6305, 511, 1, 513, 7327, 29625, 65911, 97713
Offset: 1

Views

Author

Jasha Gurevich, Dec 14 2015

Keywords

Comments

A(n,m) is the number of surjective difunctional (regular) binary relations between an n-element set and an m-element set.

Examples

			Array A begins
    1     1      1       1        1         1         1          1           1
    3     5      9      17       33        65       129        257         513
    7    19     49     127      337       919      2569       7327       21217
   15    65    225     749     2505      8525     29625     105149      380745
   31   211    961    3991    16201     65911    271561    1137991     4857001
   63   665   3969   20237    97713    464645   2214009   10657997    52034913
  127  2059  16129  100087   568177   3115519  16911049   91989367   504717697
  255  6305  65025  489149  3242265  20322605 124422105  756570029  4611314745
  511 19171 261121 2379511 18341401 130656871 896158921 6046077511 40608430681
		

Crossrefs

Programs

  • Maple
    sum((Stirling2(m, i-1)*factorial(i)+Stirling2(m,i)*factorial(i))*Stirling2(n, i), i = 1 .. n);
  • PARI
    T(n, m) = sum(i=1, n, (stirling(m, i-1, 2)*i! + stirling(m, i, 2)*i!)*stirling(n, i, 2));

Formula

T(n, m) = Sum_{i=1..n} (Stirling2(m, i-1)* i! + Stirling2(m, i)* i! ) * Stirling2(n, i).
Showing 1-1 of 1 results.