cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A023997 Number of block permutations on an n-set.

Original entry on oeis.org

1, 1, 3, 25, 339, 6721, 179643, 6166105, 262308819, 13471274401, 818288740923, 57836113793305, 4693153430067699, 432360767273547841, 44794795522199781243, 5176959027946049635225, 662704551840482536170579
Offset: 0

Views

Author

Des FitzGerald (D.FitzGerald(AT)utas.edu.au)

Keywords

Comments

A block permutation of a set X is a bijection between two quotient sets of X (of necessarily equal rank).
Number of labeled partitions of (n,n) into pairs (i,j) where there are n black objects labeled 1..n and n white objects labeled 1..n. Each partition must have at least one black object and at least one white object. - Christian G. Bower, Jun 03 2005

Examples

			For n=3, there are the 3! ordinary permutations (of rank 3), 18 block permutations of rank 2 (2! for each pair of partitions of rank 2) and the single rank 1 one.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS2[n,k]^2k!,{k,0,n}],{n,0,100}] (* Emanuele Munarini, Jul 04 2011 *)
  • Maxima
    makelist(sum(stirling2(n,k)^2*k!,k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
    
  • PARI
    a(n) = if (n==0, 1, sum(k=1, n, k!*stirling(n, k, 2)^2)); \\ Michel Marcus, Jun 18 2019

Formula

a(0)=1, a(n) = Sum_{k=1..n} k! * S2(n,k)^2, S2(n,k) are the Stirling numbers of the second kind.

Extensions

More terms from Christian G. Bower, Jun 03 2005

A014235 Number of n X n matrices with entries 0 and 1 and no 2 X 2 submatrix of form [ 1 1; 1 0 ].

Original entry on oeis.org

1, 2, 12, 128, 2100, 48032, 1444212, 54763088, 2540607060, 140893490432, 9170099291892, 690117597121328, 59318536757456340, 5763381455631211232, 627402010180980401652, 75942075645205885599248, 10153054354133705795859540, 1490544499134409408040599232
Offset: 0

Views

Author

Keywords

Examples

			For n = 2 the 12 matrices are all the 2 X 2 0-1 matrices except
[1 1]  [1 0]  [0 1]  [1 1]
[1 0], [1 1], [1 1], [0 1]. - _Robert Israel_, Feb 19 2015
		

Crossrefs

Row sums of A334689.

Programs

  • Maple
    f:= n -> add(k!*combinat:-stirling2(n+1,k+1)^2, k = 0 .. n):
    seq(f(n),n=0..30); # Robert Israel, Feb 19 2015
  • Mathematica
    Table[Sum[StirlingS2[n+1, k+1]^2k!, {k, 0, n}], {n, 0, 100}] (* Emanuele Munarini, Jul 04 2011 *)
  • Maxima
    makelist(sum(stirling2(n+1, k+1)^2*k!, k, 0, n), n, 0, 24); /* Emanuele Munarini, Jul 04 2011 */
    
  • PARI
    a(n) = sum(k=0, n, k! * stirling(n+1, k+1, 2)^2); \\ Michel Marcus, Feb 21 2015

Formula

a(n) = Sum_{k=0..n} k! * Stirling2(n+1, k+1)^2.

Extensions

a(0)=1 added by Emanuele Munarini, Jul 04 2011

A139784 a(4n+1)=2a(4n), a(4n+2)=2a(4n+1), a(4n+3)=2a(4n+2), a(4n+4)=2a(4n+3)+A007583(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 8, 19, 38, 76, 152, 315, 630, 1260, 2520, 5083, 10166, 20332, 40664, 81499, 162998, 325996, 651992, 1304667, 2609334, 5218668, 10437336, 20877403, 41754806, 83509612, 167019224, 334049371, 668098742, 1336197484, 2672394968
Offset: 0

Views

Author

Paul Curtz, May 16 2008

Keywords

Comments

a(0), a(4), a(8) and a(12) are the first terms of A111420. - R. J. Mathar, May 18 2008

Crossrefs

Cf. a(0), a(4), a(8), a(12) in A111420.

Programs

  • Mathematica
    LinearRecurrence[{2,0,0,5,-10,0,0,-4,8},{0,0,0,0,1,2,4,8,19},40] (* Harvey P. Dale, Jan 21 2013 *)

Formula

a(4n+s) = 2^s*(-1/45+7*16^n/90-4^n/18), s=0,1,2,3. - R. J. Mathar, May 18 2008
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=2, a(6)=4, a(7)=8, a(8)=19, a(n)=2*a(n-1)+5*a(n-4)-10*a(n-5)-4*a(n-8)+8*a(n-9). - Harvey P. Dale, Jan 21 2013

Extensions

Edited and extended by R. J. Mathar, May 18 2008
Showing 1-3 of 3 results.