A213999 Denominators of the triangle of fractions read by rows: pf(n,0) = 1, pf(n,n) = 1/(n+1) and pf(n+1,k) = pf(n,k) + pf(n,k-1) with 0 < k < n; denominators: A213998.
1, 1, 2, 1, 2, 3, 1, 2, 6, 4, 1, 2, 3, 12, 5, 1, 2, 6, 12, 60, 6, 1, 2, 3, 4, 10, 20, 7, 1, 2, 6, 12, 20, 20, 140, 8, 1, 2, 3, 12, 15, 10, 35, 280, 9, 1, 2, 6, 4, 20, 30, 70, 280, 2520, 10, 1, 2, 3, 12, 10, 12, 21, 56, 252, 2520, 11, 1, 2, 6, 12, 60, 60, 84, 168, 504, 2520, 27720, 12
Offset: 0
Examples
See A213998.
Links
Programs
-
Haskell
import Data.Ratio ((%), denominator, Ratio) a213999 n k = a213999_tabl !! n !! k a213999_row n = a213999_tabl !! n a213999_tabl = map (map denominator) $ iterate pf [1] where pf row = zipWith (+) ([0] ++ row) (row ++ [-1 % (x * (x + 1))]) where x = denominator $ last row
-
Mathematica
T[, 0] = 1; T[n, n_] := 1/(n + 1); T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 1, k - 1]; Table[T[n, k] // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2021 *)
Comments