cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214020 Number A(n,k) of n X k chess tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 0, 22, 0, 22, 0, 1, 1, 1, 1, 5, 92, 324, 324, 92, 5, 1, 1, 1, 1, 0, 422, 0, 8716, 0, 422, 0, 1, 1, 1, 1, 14, 2074, 47570, 343234, 343234, 47570, 2074, 14, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 01 2012

Keywords

Comments

A standard Young tableau (SYT) with cell(i,j)+i+j == 1 mod 2 for all cells is called a chess tableau. The definition appears first in the article by Jonas Sjöstrand.

Examples

			A(4,3) = A(3,4) = 6:
  [1 4  7]  [1 4  5]  [1 2  3]  [1 4  7]  [ 1  4  7]  [ 1  2  3]
  [2 5 10]  [2 7 10]  [4 7 10]  [2 5 10]  [ 2  5  8]  [ 4  5  6]
  [3 8 11]  [3 8 11]  [5 8 11]  [3 6 11]  [ 3  6  9]  [ 7  8  9]
  [6 9 12]  [6 9 12]  [6 9 12]  [8 9 12]  [10 11 12]  [10 11 12].
Square array A(n,k) begins:
  1,  1,  1,   1,     1,        1,          1,             1, ...
  1,  1,  1,   1,     1,        1,          1,             1, ...
  1,  1,  0,   1,     0,        2,          0,             5, ...
  1,  1,  1,   2,     6,       22,         92,           422, ...
  1,  1,  0,   6,     0,      324,          0,         47570, ...
  1,  1,  2,  22,   324,     8716,     343234,      17423496, ...
  1,  1,  0,  92,     0,   343234,          0,    8364334408, ...
  1,  1,  5, 422, 47570, 17423496, 8364334408, 6873642982160, ...
		

Crossrefs

Cf. A000108 (bisection of row 2), A001181 (row 3), A108774, A214021, A214088.

Programs

  • Maple
    b:= proc() option remember; local s; s:= add(i, i=args); `if`(s=0, 1,
          add(`if`(irem(s+i-args[i], 2)=1 and args[i]>`if`(i=nargs, 0,
          args[i+1]), b(subsop(i=args[i]-1, [args])[]), 0), i=1..nargs))
        end:
    A:= (n, k)-> `if`(n
    				
  • Mathematica
    b[args_List] := b[args] = Module[{s = Total[args], nargs = Length[args]}, If[s == 0, 1, Sum[If[Mod[s + i - args[[i]], 2] == 1 && args[[i]] > If[i == nargs, 0, args[[i + 1]]], b[ReplacePart[args, i -> args[[i]] - 1]], 0], {i, 1, nargs}]]]; A[n_, k_] := If[n < k, A[k, n], If[k < 2, 1, b[Array[n &, k]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)