A214048 Least m>0 such that n! <= r^m, where r = (1+sqrt(5))/2, the golden ratio.
1, 2, 4, 7, 10, 14, 18, 23, 27, 32, 37, 42, 47, 53, 58, 64, 70, 76, 82, 88, 95, 101, 108, 114, 121, 128, 135, 142, 149, 156, 163, 170, 177, 185, 192, 199, 207, 214, 222, 230, 237, 245, 253, 261, 269, 277, 285, 293, 301, 309
Offset: 1
Examples
a(4) = 7 because r^6 < 4! <= 4^7.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Aleksandar Petojević, Lambert's W function and Kurepa's left factorial, Project: Kurepa's hypothesis for left factorial, ResearchGate (2023).
- Aleksandar Petojević, Marjana Gorjanac Ranitović, Dragan Rastovac, and Milinko Mandić, The Golden Ratio, Factorials, and the Lambert W Function, Journal of Integer Sequences, Vol. 27 (2024), Article 24.5.7.
Programs
-
Mathematica
Table[m=1; While[n!>GoldenRatio^m, m++]; m, {n,1,100}]
Comments