cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214087 Sum of the squares of numbers of nonconsecutive tableaux over all partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 6, 21, 92, 489, 3000, 20970, 166714, 1467337, 14212491, 149992662, 1723338952, 21393028409, 285061374438, 4054622024814, 61301381208116, 982904573560309, 16672187358390360, 298389960090957330, 5617735345244596804, 110942937545014894799
Offset: 0

Views

Author

Alois P. Heinz, Jul 02 2012

Keywords

Comments

A standard Young tableau (SYT) where entries i and i+1 never appear in the same row is called a nonconsecutive tableau.

Crossrefs

Programs

  • Maple
    b:= proc(l, t) option remember; local n, s; n, s:= nops(l),
           add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]>
          `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
        end:
    g:= (n, i, l)-> `if`(n=0 or i=1, b([l[], 1$n], 0)^2, `if`(i<1, 0,
                     add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    a:= n-> `if`(n<2, 1, g(n, n, [])):
    seq(a(n), n=0..20);
  • Mathematica
    b[l_, t_] := b[l, t] = Module[{n = Length[l], s = Total[l]}, If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, i -> l[[i]] - 1], i], 0], {i, 1, n}]]];
    g[n_, i_, l_] := If[n == 0 || i == 1, b[Join[l, Table[1, n]], 0]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Table[i, j]]], {j, 0, n/i}]]];
    a[n_] := If[n < 2, 1, g[n, n, {}]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 23 2018, translated from Maple *)