A214087 Sum of the squares of numbers of nonconsecutive tableaux over all partitions of n.
1, 1, 1, 2, 6, 21, 92, 489, 3000, 20970, 166714, 1467337, 14212491, 149992662, 1723338952, 21393028409, 285061374438, 4054622024814, 61301381208116, 982904573560309, 16672187358390360, 298389960090957330, 5617735345244596804, 110942937545014894799
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Wikipedia, Young tableau
Programs
-
Maple
b:= proc(l, t) option remember; local n, s; n, s:= nops(l), add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]> `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n)) end: g:= (n, i, l)-> `if`(n=0 or i=1, b([l[], 1$n], 0)^2, `if`(i<1, 0, add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))): a:= n-> `if`(n<2, 1, g(n, n, [])): seq(a(n), n=0..20);
-
Mathematica
b[l_, t_] := b[l, t] = Module[{n = Length[l], s = Total[l]}, If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, i -> l[[i]] - 1], i], 0], {i, 1, n}]]]; g[n_, i_, l_] := If[n == 0 || i == 1, b[Join[l, Table[1, n]], 0]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Table[i, j]]], {j, 0, n/i}]]]; a[n_] := If[n < 2, 1, g[n, n, {}]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 23 2018, translated from Maple *)
Comments