A214101 T(n,k)=Number of 0..2 colorings of an nx(k+1) array circular in the k+1 direction with new values 0..2 introduced in row major order.
1, 1, 3, 3, 2, 9, 5, 19, 4, 27, 11, 30, 121, 8, 81, 21, 143, 180, 771, 16, 243, 43, 322, 2041, 1080, 4913, 32, 729, 85, 1179, 5068, 29540, 6480, 31307, 64, 2187, 171, 3110, 37441, 79968, 428383, 38880, 199497, 128, 6561, 341, 10183, 121588, 1241355, 1262128
Offset: 1
Examples
Some solutions for n=4 k=1 ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1 ..2..0....2..0....1..0....1..2....1..2....1..2....1..2....2..0....1..0....1..2 ..0..1....1..2....0..1....0..1....2..0....2..0....2..0....0..2....2..1....0..1 ..1..2....2..0....2..0....2..0....0..2....1..2....0..1....1..0....1..2....1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..309
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 2*a(n-1)
k=3: a(n) = 7*a(n-1) -4*a(n-2)
k=4: a(n) = 6*a(n-1)
k=5: a(n) = 19*a(n-1) -71*a(n-2) +86*a(n-3) -24*a(n-4)
k=6: a(n) = 18*a(n-1) -36*a(n-2) +16*a(n-3)
k=7: a(n) = 54*a(n-1) -820*a(n-2) +4906*a(n-3) -11803*a(n-4) +11888*a(n-5) -4672*a(n-6) +576*a(n-7)
Empirical for row n:
n=1: a(k)=a(k-1)+2*a(k-2)
n=2: a(k)=2*a(k-1)+5*a(k-2)-6*a(k-3)
n=3: a(k)=3*a(k-1)+15*a(k-2)-33*a(k-3)-22*a(k-4)+38*a(k-5)+8*a(k-6)-8*a(k-7)
n=4: (order 11)
n=5: (order 29)
n=6: (order 40)
Comments