A214112 T(n,k)=Number of 0..3 colorings of an nx(k+1) array circular in the k+1 direction with new values 0..3 introduced in row major order.
1, 1, 4, 4, 11, 25, 10, 111, 121, 172, 31, 670, 3502, 1331, 1201, 91, 4994, 44900, 110985, 14641, 8404, 274, 34041, 825105, 3008980, 3517864, 161051, 58825, 820, 241021, 12777541, 136579852, 201647240, 111505491, 1771561, 411772, 2461, 1678940
Offset: 1
Examples
Some solutions for n=4 k=1 ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1 ..1..0....1..2....2..3....1..0....1..0....1..0....1..2....1..0....1..0....1..2 ..0..1....0..1....3..1....0..1....2..3....2..1....3..0....0..2....2..3....3..1 ..1..2....1..0....1..0....1..0....3..2....3..0....0..1....1..3....3..1....0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..160
Formula
Empirical for column k:
k=1: a(n) = 8*a(n-1) -7*a(n-2)
k=2: a(n) = 11*a(n-1)
k=3: a(n) = 35*a(n-1) -107*a(n-2) +73*a(n-3)
k=4: a(n) = 68*a(n-1) -66*a(n-2)
k=5: a(n) = 200*a(n-1) -5769*a(n-2) +11744*a(n-3) +43057*a(n-4) -89856*a(n-5) +40625*a(n-6)
k=6: a(n) = 416*a(n-1) -15454*a(n-2) +89758*a(n-3) +90848*a(n-4) -438718*a(n-5) +62801*a(n-6)
k=7: (order 15)
Empirical for row n:
n=1: a(k)=3*a(k-1)+a(k-2)-3*a(k-3)
n=2: a(k)=4*a(k-1)+22*a(k-2)-4*a(k-3)-21*a(k-4)
n=3: a(k)=11*a(k-1)+123*a(k-2)-509*a(k-3)-1615*a(k-4)+7137*a(k-5)-19*a(k-6)-20571*a(k-7)+13176*a(k-8)+13932*a(k-9)-11664*a(k-10)
n=4: (order 26)
n=5: (order 71)
Comments