cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214112 T(n,k)=Number of 0..3 colorings of an nx(k+1) array circular in the k+1 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 1, 4, 4, 11, 25, 10, 111, 121, 172, 31, 670, 3502, 1331, 1201, 91, 4994, 44900, 110985, 14641, 8404, 274, 34041, 825105, 3008980, 3517864, 161051, 58825, 820, 241021, 12777541, 136579852, 201647240, 111505491, 1771561, 411772, 2461, 1678940
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Table starts
....1.....1.......4........10..........31............91.............274
....4....11.....111.......670........4994.........34041..........241021
...25...121....3502.....44900......825105......12777541.......214404272
..172..1331..110985...3008980...136579852....4797577911....191154162535
.1201.14641.3517864.201647240.22615881851.1801391900581.170522196557894

Examples

			Some solutions for n=4 k=1
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..1..0....1..2....2..3....1..0....1..0....1..0....1..2....1..0....1..0....1..2
..0..1....0..1....3..1....0..1....2..3....2..1....3..0....0..2....2..3....3..1
..1..2....1..0....1..0....1..0....3..2....3..0....0..1....1..3....3..1....0..2
		

Crossrefs

Column 1 is A034494(n-1)
Column 2 is A001020(n-1)
Row 1 is A006342(n-1)

Formula

Empirical for column k:
k=1: a(n) = 8*a(n-1) -7*a(n-2)
k=2: a(n) = 11*a(n-1)
k=3: a(n) = 35*a(n-1) -107*a(n-2) +73*a(n-3)
k=4: a(n) = 68*a(n-1) -66*a(n-2)
k=5: a(n) = 200*a(n-1) -5769*a(n-2) +11744*a(n-3) +43057*a(n-4) -89856*a(n-5) +40625*a(n-6)
k=6: a(n) = 416*a(n-1) -15454*a(n-2) +89758*a(n-3) +90848*a(n-4) -438718*a(n-5) +62801*a(n-6)
k=7: (order 15)
Empirical for row n:
n=1: a(k)=3*a(k-1)+a(k-2)-3*a(k-3)
n=2: a(k)=4*a(k-1)+22*a(k-2)-4*a(k-3)-21*a(k-4)
n=3: a(k)=11*a(k-1)+123*a(k-2)-509*a(k-3)-1615*a(k-4)+7137*a(k-5)-19*a(k-6)-20571*a(k-7)+13176*a(k-8)+13932*a(k-9)-11664*a(k-10)
n=4: (order 26)
n=5: (order 71)