A214126 a(2n)=a(n-1)+a(n) and a(2n+1)=a(n+1) for n>=1, with a(0)=a(1)=1.
1, 1, 2, 2, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 5, 8, 2, 7, 5, 7, 4, 9, 6, 10, 3, 9, 7, 10, 5, 12, 8, 13, 2, 10, 7, 9, 5, 12, 7, 12, 4, 11, 9, 13, 6, 15, 10, 16, 3, 13, 9, 12, 7, 16, 10, 17, 5, 15, 12, 17, 8, 20, 13, 21, 2, 15, 10, 12, 7, 17, 9, 16, 5, 14, 12
Offset: 0
Examples
a(2^n+1) = 2 because a(2) = 2 and a(2*n+1) = a(n+1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8192
Crossrefs
Programs
-
Maple
a:= proc(n) local r; a(n):= `if`(n<2, 1, `if`(irem(n, 2, 'r')=0, a(r-1)+a(r), a(r+1))) end: seq(a(n), n=1..100); # Alois P. Heinz, Jul 06 2012
-
Mathematica
a[0] = a[1] = 1; a[n_] := a[n] = If[EvenQ[n], a[n/2-1] + a[n/2], a[(n-1)/2+1]]; Array[a, 100, 0] (* Jean-François Alcover, May 31 2019 *)
-
Python
a = [1]*(77*2) for n in range(1,77): a[2*n ]=a[n-1]+a[n] a[2*n+1]=a[n+1] print(str(a[n-1]),end=',')
Formula
a(0) = a(1) = 1, for n>=1: a(2*n) = a(n-1)+a(n) and a(2*n+1) = a(n+1).
Comments