A214131 Partitions of n into parts congruent to +-4, +-6 (mod 13).
1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 10, 12, 12, 15, 15, 18, 19, 22, 23, 27, 28, 32, 35, 39, 41, 47, 50, 56, 60, 67, 71, 80, 85, 94, 101, 113, 119, 132, 141, 156, 166, 183, 195, 215, 229, 250, 268, 293, 313, 341
Offset: 0
Keywords
Examples
1 + x^4 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + 2*x^12 + 2*x^13 + 2*x^14 + ... q^5 + q^29 + q^41 + q^47 + q^53 + q^59 + q^65 + q^71 + 2*q^77 + 2*q^83 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ q^4, q^13] QPochhammer[ q^6, q^13] QPochhammer[ q^7, q^13] QPochhammer[ q^9, q^13]), {q, 0, n}]
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [ 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0][k%13 + 1] * x^k, 1 + x * O(x^n)), n))}
Formula
Expansion of f(-x^13)^2 / (f(-x^4, -x^9) * f(-x^6, -x^7)) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 13 sequence [ 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, ...].
G.f.: 1 / (Product_{k>0} (1 - x^(13*k - 4)) * (1 - x^(13*k - 6)) * (1 - x^(13*k - 7)) * (1 - x^(13*k - 9))).
Comments