A214141 T(n,k)=Number of 0..4 colorings of an nx(k+1) array circular in the k+1 direction with new values 0..4 introduced in row major order.
1, 1, 4, 4, 17, 33, 11, 257, 514, 380, 40, 3074, 28278, 16388, 4801, 147, 40434, 1101051, 3221873, 524296, 62004, 568, 522515, 47730973, 396246659, 367793014, 16777232, 804833, 2227, 6800539, 2000093424, 56449101747, 142612676441, 41989913081
Offset: 1
Examples
Some solutions for n=4 k=1 ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1 ..2..3....1..2....1..2....1..0....2..3....1..0....2..3....1..0....2..3....2..0 ..3..2....2..0....2..3....2..1....0..4....2..3....3..2....2..3....1..4....0..1 ..4..0....3..4....1..0....1..2....1..0....0..4....2..0....3..4....4..3....1..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..111
Crossrefs
Column 1 is A198900
Formula
Empirical for column k:
k=1: a(n) = 17*a(n-1) -55*a(n-2) +39*a(n-3)
k=2: a(n) = 34*a(n-1) -64*a(n-2)
k=3: a(n) = 129*a(n-1) -1759*a(n-2) +7575*a(n-3) -9064*a(n-4) +3120*a(n-5)
k=4: a(n) = 373*a(n-1) -4754*a(n-2) +15312*a(n-3)
k=5: (order 10)
k=6: (order 9)
Empirical for row n:
n=1: a(k)=6*a(k-1)-7*a(k-2)-6*a(k-3)+8*a(k-4)
n=2: a(k)=10*a(k-1)+50*a(k-2)-116*a(k-3)-361*a(k-4)+106*a(k-5)+312*a(k-6)
n=3: (order 15)
n=4: (order 37)
Comments