A214150 Least prime p such that the factorization of p^2 - 25 contains n consecutive primes beginning with prime(4)=7.
19, 61, 863, 5231, 84859, 532537, 3432203, 255634241, 4594884299, 44139608287, 644772297031, 33055909092211, 271103095974079, 93380069969929969, 1151842860713446127, 22664072571698543617, 2801339281067798957117, 137197247292115717439959
Offset: 1
Keywords
Examples
a(4) = 5231, 5226 = 2*3*13*67, 5236 = 2^2*7*11*17, the factorization of 5231^2 - 25 contains the 4 consecutive primes 7, 11, 13 and 17 beginning with 7.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..29
Programs
-
PARI
A214150(n)= { local(a, k=1, p); a=prod(j=4, n+3, prime(j)); while( 1, if( issquare(24*k*a+25, &p), if( ispseudoprime(p), return(p) ) ); k++; )}
-
Python
from itertools import product from sympy import isprime, sieve, prime from sympy.ntheory.modular import crt def A214150(n): return 19 if n == 1 else int(min(filter(lambda n: n > 5 and isprime(n),(crt(tuple(sieve.primerange(7,prime(n+3)+1)), t)[0] for t in product((5,-5),repeat=n))))) # Chai Wah Wu, Jun 01 2022
Extensions
More terms from Max Alekseyev, Aug 22 2012
Comments