cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214152 Number of permutations T(n,k) in S_n containing an increasing subsequence of length k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 24, 23, 10, 1, 120, 119, 78, 17, 1, 720, 719, 588, 207, 26, 1, 5040, 5039, 4611, 2279, 458, 37, 1, 40320, 40319, 38890, 24553, 6996, 891, 50, 1, 362880, 362879, 358018, 268521, 101072, 18043, 1578, 65, 1, 3628800, 3628799, 3612004, 3042210, 1438112, 337210, 40884, 2603, 82, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 05 2012

Keywords

Examples

			T(3,2) = 5.  All 3! = 6 permutations of {1,2,3} contain an increasing subsequence of length 2 with the exception of 321.
Triangle T(n,k) begins:
     1;
     2,    1;
     6,    5,    1;
    24,   23,   10,    1;
   120,  119,   78,   17,   1;
   720,  719,  588,  207,  26,  1;
  5040, 5039, 4611, 2279, 458, 37,  1;
  ...
		

Crossrefs

Columns k=1-10 give: A000142 (for n>0), A033312, A056986, A158005, A158432, A159139, A159175, A217675, A217676, A217677.
Row sums give: A003316.
T(2n,n) gives A269021.
Diagonal and lower diagonals give: A000012, A002522, A217200, A217193.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
          +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
                     add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    T:= (n, k)-> n! -g(n, k-1, []):
    seq(seq(T(n, k), k=1..n), n=1..12);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; t[n_, k_] := n! - g[n, k-1, {}]; Table[Table[t[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

Formula

T(n,k) = Sum_{i=k..n} A047874(n,i).
T(n,k) = A000142(n) - A214015(n,k-1).