A214166 T(n,k)=Number of 0..5 colorings of an nx(k+1) array circular in the k+1 direction with new values 0..5 introduced in row major order.
1, 1, 4, 4, 18, 34, 11, 337, 902, 481, 41, 5994, 88261, 60320, 8731, 161, 121778, 7386816, 27240856, 4242606, 174454, 694, 2518082, 655418810, 9601970064, 8548472292, 300785428, 3603244, 3151, 52655411, 57661437162, 3598372134742
Offset: 1
Examples
Some solutions for n=4 k=1 ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1 ..1..2....1..2....1..2....1..2....1..2....1..0....1..0....1..0....2..3....2..3 ..3..4....0..1....3..0....2..0....0..3....2..1....2..3....2..3....3..1....0..1 ..5..3....1..0....0..4....0..2....1..2....0..2....0..4....1..0....4..2....1..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..83
Crossrefs
Column 1 is A198900
Formula
Empirical for column k:
k=1: a(n) = 32*a(n-1) -262*a(n-2) +672*a(n-3) -441*a(n-4)
k=2: a(n) = 84*a(n-1) -945*a(n-2) +1562*a(n-3)
k=3: a(n) = 370*a(n-1) -18411*a(n-2) +297448*a(n-3) -1839799*a(n-4) +4424682*a(n-5) -4113757*a(n-6) +1249468*a(n-7)
k=4: a(n) = 1402*a(n-1) -130492*a(n-2) +2979072*a(n-3) -15573492*a(n-4) +12571416*a(n-5)
k=5: (order 15)
Empirical for row n:
n=1: a(k)=10*a(k-1)-30*a(k-2)+20*a(k-3)+31*a(k-4)-30*a(k-5)
n=2: a(k)=21*a(k-1)+49*a(k-2)-959*a(k-3)-1869*a(k-4)+7679*a(k-5)+15051*a(k-6)-6741*a(k-7)-13230*a(k-8)
n=3: (order 22)
n=4: (order 60)
Comments