A214178 Triangle T(n,k) by rows: the k-th derivative of the Fibonacci Polynomial F_n(x) evaluated at x=1.
0, 1, 0, 1, 1, 0, 2, 2, 2, 0, 3, 5, 6, 6, 0, 5, 10, 18, 24, 24, 0, 8, 20, 44, 84, 120, 120, 0, 13, 38, 102, 240, 480, 720, 720, 0, 21, 71, 222, 630, 1560, 3240, 5040, 5040, 0, 34, 130, 466, 1536, 4560, 11760, 25200, 40320, 40320, 0, 55, 235, 948, 3564, 12264
Offset: 0
Examples
The triangle begins: . 0: [0] . 1: [1, 0] . 2: [1, 1, 0] . 3: [2, 2, 2, 0] . 4: [3, 5, 6, 6, 0] . 5: [5, 10, 18, 24, 24, 0] . 6: [8, 20, 44, 84, 120, 120, 0] . 7: [13, 38, 102, 240, 480, 720, 720, 0] . 8: [21, 71, 222, 630, 1560, 3240, 5040, 5040, 0] . 9: [34, 130, 466, 1536, 4560, 11760, 25200, 40320, 40320, 0] . 10: [55, 235, 948, 3564, 12264, 37800, 100800, 221760, 362880, 362880, 0] ...
Links
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- P. Filipponi, A. F. Horadam, Second derivative sequences of Fibonacci and Lucas Polynomials, Fib. Quart. 31 (1993), 194-204.
Programs
-
Haskell
a214178 n k = a214178_tabl !! n !! k a214178_row n = a214178_tabl !! n a214178_tabl = [0] : map f a037027_tabl where f row = (zipWith (*) a000142_list row) ++ [0]
-
Mathematica
T[n_, k_] := D[Fibonacci[n, x], {x, k}] /. x -> 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 20 2021 *)
Formula
T(n,k) = A037027(n,k)*k!, 0 <= k < n; T(n,n) = 0.
Comments