A214197 Primes of the "second kind".
2, 3, 5, 7, 11, 19, 23, 47, 59, 61, 71, 101, 113, 223, 487, 661, 719, 811, 947, 1327, 1621, 2039, 2161, 2377, 2381, 2699, 2957, 3011, 3607, 3727, 4093, 4549, 4649, 5939, 6473, 8363, 9601
Offset: 1
Links
- Zhi-Wei Sun, On functions taking only prime values, arXiv preprint arXiv:1202.6589, 2012; see p. 5.
Crossrefs
Cf. A214196.
Programs
-
Mathematica
primorial[n_] := primorial[n] = Product[Prime[i], {i, 1, n}]; p[0] = 1; p[n_] := p[n] = Module[{m, i, j, ddvs}, For[m = 2, True, m++, ddvs = False; For[i = 1, i <= n - 1, i++, For[j = i + 1, j <= n, j++, If[Mod[primorial[j] + primorial[i], m] == 0, ddvs = True; Break[]]]; If[ddvs, Break[]]]; If[ddvs == False, Return[m]]]]; A214197 = Reap[n = k = 1; While[n <= 400, If[p[n] != p[n - 1], a[k] = p[n]; Print[n, " a(", k, ") = ", a[k]]; Sow[a[k]]; k++]; n++]][[2, 1]] (* Jean-François Alcover, Jan 20 2018, after R. J. Mathar *)
Extensions
a(21)-a(37) from Jean-François Alcover, Jan 20 2018
Comments