A025271 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5, with initial values 1,1,2,1.
1, 1, 2, 1, 6, 18, 52, 165, 518, 1646, 5308, 17258, 56604, 187108, 622632, 2084461, 7016134, 23730006, 80610156, 274911614, 940915892, 3230919164, 11127525464, 38429281122, 133052559772, 461740643276, 1605877668824, 5596283069300
Offset: 1
Keywords
Links
- Filippo Disanto, The size of the biggest Caterpillar subtree in binary rooted planar trees, arXiv preprint arXiv:1202.5668 [math.CO], 2012-2013. See the sequence F-(3).
Programs
-
Maple
For a Maple program see A214198.
-
Mathematica
nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 2; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
-
PARI
default(seriesprecision, 100); Vec((1-sqrt(1-4*x+16*x^4))/2 + O(x^50)) \\ Michel Marcus, Nov 22 2014
Formula
G.f.: (1/2)*(1-sqrt(1-4*x+2^(k+1)*x^(k+1))) with k=3. - N. J. A. Sloane, Jul 07 2012
Conjecture: n*a(n) +(n+1)*a(n-1) +(n+8)*a(n-2) +42*(-2*n+7)*a(n-3) +16*(n-6)*a(n-4) +80*(n-7)*a(n-5) +336*(n-8)*a(n-6)=0. - R. J. Mathar, Nov 21 2014
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 16*(n-6)*a(n-4). - Vaclav Kotesovec, Jan 25 2015