cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A025271 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5, with initial values 1,1,2,1.

Original entry on oeis.org

1, 1, 2, 1, 6, 18, 52, 165, 518, 1646, 5308, 17258, 56604, 187108, 622632, 2084461, 7016134, 23730006, 80610156, 274911614, 940915892, 3230919164, 11127525464, 38429281122, 133052559772, 461740643276, 1605877668824, 5596283069300
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    For a Maple program see A214198.
  • Mathematica
    nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 2; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
  • PARI
    default(seriesprecision, 100); Vec((1-sqrt(1-4*x+16*x^4))/2 + O(x^50)) \\ Michel Marcus, Nov 22 2014

Formula

G.f.: (1/2)*(1-sqrt(1-4*x+2^(k+1)*x^(k+1))) with k=3. - N. J. A. Sloane, Jul 07 2012
Conjecture: n*a(n) +(n+1)*a(n-1) +(n+8)*a(n-2) +42*(-2*n+7)*a(n-3) +16*(n-6)*a(n-4) +80*(n-7)*a(n-5) +336*(n-8)*a(n-6)=0. - R. J. Mathar, Nov 21 2014
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 16*(n-6)*a(n-4). - Vaclav Kotesovec, Jan 25 2015

A214199 Number of rooted planar binary unlabeled trees with n leaves and caterpillar index = 3.

Original entry on oeis.org

0, 0, 0, 2, 0, 4, 12, 36, 120, 392, 1288, 4284, 14304, 48024, 162024, 548872, 1866416, 6368464, 21797776, 74822636, 257513344, 888439192, 3072153864, 10645835384, 36964041872, 128584760560, 448087042160, 1564065659608, 5467992829120, 19144550862960, 67123334707984, 235658063191312, 828405764175712, 2915610778184352, 10273466501139232, 36239527330228044
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2012

Keywords

Crossrefs

Programs

A214200 Number of rooted planar binary unlabeled trees with n leaves and caterpillar index <= 4.

Original entry on oeis.org

0, 1, 1, 2, 5, 6, 26, 84, 269, 870, 2910, 9788, 33250, 114012, 394260, 1372776, 4809917, 16947462, 60012470, 213462380, 762355286, 2732658484, 9827926060, 35453715480, 128255260690, 465163021788, 1691086242796, 6161413737176, 22494722099492, 82282062468600, 301507924857768, 1106652847697872, 4068159345287325, 14976738917364166
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2012

Keywords

Crossrefs

Programs

A214201 Number of rooted planar binary unlabeled trees with n leaves and caterpillar index >= 4.

Original entry on oeis.org

0, 0, 0, 0, 4, 8, 24, 80, 264, 912, 3216, 11488, 41528, 151408, 555792, 2051808, 7610384, 28341536, 105914784, 397028544, 1492351576, 5623204528, 21235347856, 80355038176, 304630332528, 1156851587552, 4400205758176, 16761475403328, 63937267846704, 244209062245984, 933904716768672, 3575584117620416, 13704666128328736, 52582688861676096
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2012

Keywords

Crossrefs

Programs

A214202 Number of rooted planar binary unlabeled trees with n leaves and caterpillar index = 4.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 8, 32, 104, 352, 1264, 4480, 15992, 57408, 207152, 750144, 2725456, 9931328, 36282464, 132852224, 487443672, 1791742592, 6597006896, 24326190016, 89825979568, 332110462016, 1229345599520, 4555536068352, 16898439030192, 62743172964224, 233170424975072, 867250463225984, 3228189434389152, 12025362901992064, 44827564359795392
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2012

Keywords

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*x))/2; # A000108 with a different offset
    # F-(k): gives A025266, A025271, A214200, A214203
    Fm:=k->(1/2)*(1-sqrt(1-4*x+2^(k+1)*x^(k+1)));
    Sm:=k->seriestolist(series(Fm(k),x,50));
    # F+(k): gives A000108, A214198, A214201, A214204
    Fp:=k->C-Fm(k-1);
    Sp:=k->seriestolist(series(Fp(k),x,50));
    # F(k): gives A025266, A214199, A214202, A214205
    F:=k->Fm(k)-Fm(k-1);
    S:=k->seriestolist(series(F(k),x,50));
  • Mathematica
    (1/2)*(Sqrt[1 - 4*x + 16*x^4] - Sqrt[1 - 4*x + 32*x^5]) + O[x]^35 // CoefficientList[#, x]& (* Jean-François Alcover, Nov 07 2016, after Maple *)

A214203 Number of rooted planar binary unlabeled trees with n leaves and caterpillar index <= 5.

Original entry on oeis.org

0, 1, 1, 2, 5, 14, 26, 100, 333, 1110, 3742, 12764, 44258, 154636, 544660, 1932360, 6900029, 24780390, 89445174, 324326060, 1180834390, 4315287140, 15823305516, 58200045432, 214672363410, 793883691004, 2942917457772, 10933569255832, 40704185771812, 151826357818840, 567322837830824, 2123429246035600, 7960199797453213, 29884582184913542
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2012

Keywords

Crossrefs

Programs

A214204 Number of rooted planar binary unlabeled trees with n leaves and caterpillar index >= 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 16, 48, 160, 560, 1952, 7008, 25536, 94000, 348640, 1301664, 4884928, 18410208, 69632320, 264176320, 1004907904, 3831461936, 14638340960, 56028848160, 214804352960, 824741125536, 3170860158656, 12205939334976, 47038828816512, 181465889281760, 700734291793600, 2708333654394432, 10476476693939584, 40557325959684032
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2012

Keywords

Crossrefs

Programs

A214205 Number of rooted planar binary unlabeled trees with n leaves and caterpillar index = 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 16, 64, 240, 832, 2976, 11008, 40624, 150400, 559584, 2090112, 7832928, 29432704, 110863680, 418479104, 1582628656, 5995379456, 22746329952, 86417102720, 328720669216, 1251831214976, 4772155518656, 18209463672320, 69544295350240, 265814912973056, 1016776398337728, 3892040452165888, 14907843267549376
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2012

Keywords

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*x))/2; # A000108 with a different offset
    # F-(k): gives A025266, A025271, A214200, A214203
    Fm:=k->(1/2)*(1-sqrt(1-4*x+2^(k+1)*x^(k+1)));
    Sm:=k->seriestolist(series(Fm(k),x,50));
    # F+(k): gives A000108, A214198, A214201, A214204
    Fp:=k->C-Fm(k-1);
    Sp:=k->seriestolist(series(Fp(k),x,50));
    # F(k): gives A025266, A214199, A214202, A214205
    F:=k->Fm(k)-Fm(k-1);
    S:=k->seriestolist(series(F(k),x,50));
  • Mathematica
    (1/2)*(Sqrt[1 - 4*x + 32*x^5] - Sqrt[1 - 4*x + 64*x^6]) + O[x]^34 // CoefficientList[#, x]& (* Jean-François Alcover, Nov 07 2016, after Maple *)
Showing 1-8 of 8 results.