cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214215 List of subwords (or factors) of the Thue-Morse "1,2"-word A001285.

Original entry on oeis.org

1, 2, 11, 12, 21, 22, 112, 121, 122, 211, 212, 221, 1121, 1122, 1211, 1212, 1221, 2112, 2121, 2122, 2211, 2212, 11212, 11221, 12112, 12122, 12211, 12212, 21121, 21122, 21211, 21221, 22112, 22121, 112122, 112211, 112212, 121121, 121122, 121221, 122112, 122121
Offset: 1

Views

Author

N. J. A. Sloane, Jul 10 2012

Keywords

Comments

The number of factors of length m is given by A005942(m).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local r;
          `if`(n=0, 1, `if`(n<4, 2*n, `if`(irem(n, 2, 'r')=0,
           b(r)+b(r+1), 2*b(r+1))))
        end:
    m:= proc(n) option remember; local r;
          `if`(n=0, 1, `if`(irem(n, 2, 'r')=0, m(r), 3-m(r)))
        end:
    T:= proc(n) local k, s; s:={};
          for k while nops(s)Alois P. Heinz, Jul 19 2012
  • Mathematica
    b[n_] := b[n] = Module[{r}, If[n == 0, 1, If[n < 4, 2n, r = Quotient[n, 2]; If[Mod[n, 2] == 0, b[r] + b[r + 1], 2b[r + 1]]]]];
    m[n_] := m[n] = Module[{r}, If[n == 0, 1, r = Quotient[n, 2]; If[Mod[n, 2] == 0, m[r], 3 - m[r]]]];
    T[n_] := Module[{k, s = {}}, For[k = 1,  Length[s] < b[n], k++, s = s  ~Union~ {FromDigits[#]}& @ Table[m[i], {i, k, k + n - 1}]]; Sort[s]];
    Array[T, 10] // Flatten (* Jean-François Alcover, Nov 22 2020, after Alois P. Heinz *)