A214215 List of subwords (or factors) of the Thue-Morse "1,2"-word A001285.
1, 2, 11, 12, 21, 22, 112, 121, 122, 211, 212, 221, 1121, 1122, 1211, 1212, 1221, 2112, 2121, 2122, 2211, 2212, 11212, 11221, 12112, 12122, 12211, 12212, 21121, 21122, 21211, 21221, 22112, 22121, 112122, 112211, 112212, 121121, 121122, 121221, 122112, 122121
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10200
Programs
-
Maple
b:= proc(n) option remember; local r; `if`(n=0, 1, `if`(n<4, 2*n, `if`(irem(n, 2, 'r')=0, b(r)+b(r+1), 2*b(r+1)))) end: m:= proc(n) option remember; local r; `if`(n=0, 1, `if`(irem(n, 2, 'r')=0, m(r), 3-m(r))) end: T:= proc(n) local k, s; s:={}; for k while nops(s)Alois P. Heinz, Jul 19 2012
-
Mathematica
b[n_] := b[n] = Module[{r}, If[n == 0, 1, If[n < 4, 2n, r = Quotient[n, 2]; If[Mod[n, 2] == 0, b[r] + b[r + 1], 2b[r + 1]]]]]; m[n_] := m[n] = Module[{r}, If[n == 0, 1, r = Quotient[n, 2]; If[Mod[n, 2] == 0, m[r], 3 - m[r]]]]; T[n_] := Module[{k, s = {}}, For[k = 1, Length[s] < b[n], k++, s = s ~Union~ {FromDigits[#]}& @ Table[m[i], {i, k, k + n - 1}]]; Sort[s]]; Array[T, 10] // Flatten (* Jean-François Alcover, Nov 22 2020, after Alois P. Heinz *)
Comments