A214249 Number A(n,k) of compositions of n where differences between neighboring parts are in {-k,...,k} \ {0}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 3, 4, 5, 5, 1, 1, 1, 1, 3, 4, 7, 11, 5, 1, 1, 1, 1, 3, 4, 7, 12, 14, 7, 1, 1, 1, 1, 3, 4, 7, 14, 20, 18, 10, 1, 1, 1, 1, 3, 4, 7, 14, 21, 30, 36, 9, 1, 1, 1, 1, 3, 4, 7, 14, 23, 36, 50, 49, 14, 1
Offset: 0
Examples
A(3,0) = 1: [3]. A(4,1) = 2: [4], [1,2,1]. A(5,2) = 5: [5], [3,2], [2,3], [2,1,2], [1,3,1]. A(6,3) = 12: [6], [4,2], [3,2,1], [3,1,2], [2,4], [2,3,1], [2,1,3], [2,1,2,1], [1,4,1], [1,3,2], [1,2,3], [1,2,1,2]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 3, 3, 3, 3, 3, 3, 3, ... 1, 2, 4, 4, 4, 4, 4, 4, ... 1, 4, 5, 7, 7, 7, 7, 7, ... 1, 5, 11, 12, 14, 14, 14, 14, ... 1, 5, 14, 20, 21, 23, 23, 23, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j, k), j={$-k..k} minus{0}))) end: A:= (n, k)-> `if`(n=0, 1, add(b(n, j, min(n, k)), j=1..n)): seq(seq(A(n, d-n), n=0..d), d=0..15);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n<1 || i<1, 0, If[n == i, 1, Sum[b[n-i, i+j, k], {j, Range[-k, -1] ~Join~ Range[k]}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n, j, Min[n, k]], {j, 1, n}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)