cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214251 Sum of the eight nearest neighbors of n in a right triangular type-2 spiral with positive integers.

Original entry on oeis.org

62, 64, 69, 125, 94, 111, 170, 118, 105, 116, 169, 132, 131, 151, 192, 284, 217, 201, 206, 220, 258, 353, 265, 234, 227, 235, 243, 269, 349, 285, 275, 283, 291, 299, 328, 387, 515, 412, 378, 374, 382, 390, 398, 421, 477, 608, 484, 435, 419, 427, 435
Offset: 1

Views

Author

Alex Ratushnyak, Jul 08 2012

Keywords

Comments

Right triangular type-1 spiral (A214230): implements the sequence Up, Right-down, Left.
Right triangular type-2 spiral: Left, Up, Right-down.
Right triangular type-3 spiral (A214252): Right-down, Left, Up.

Examples

			Right triangular type-2 spiral begins:
67
66  68
65  37  69
64  36  38  70
63  35  16  39  71
62  34  15  17  40  72
61  33  14   4  18  41  73
60  32  13   3   5  19  42  74
59  31  12   2   1   6  20  43  75
58  30  11  10   9   8   7  21  44  76
57  29  28  27  26  25  24  23  22  45  77
56  55  54  53  52  51  50  49  48  47  46  78
The eight nearest neighbors of 5 are 1, 2, 3, 4, 18, 41, 19, 6. Their sum is a(5)=94.
		

Crossrefs

Cf. A214230.
Cf. A214252.

Programs

  • Python
    SIZE=29  # must be odd
    grid = [0] * (SIZE*SIZE)
    saveX = [0]* (SIZE*SIZE)
    saveY = [0]* (SIZE*SIZE)
    saveX[1] = saveY[1] = posX = posY = SIZE//2
    grid[posY*SIZE+posX]=1
    n = 2
    def walk(stepX, stepY, chkX, chkY):
      global posX, posY, n
      while 1:
        posX+=stepX
        posY+=stepY
        grid[posY*SIZE+posX]=n
        saveX[n]=posX
        saveY[n]=posY
        n+=1
        if posY==0 or grid[(posY+chkY)*SIZE+posX+chkX]==0:
            return
    while 1:
        walk(-1, 0,  0, -1)    # left
        walk(0, -1,  1,  1)    # up
        if posY==0:
            break
        walk( 1, 1, -1,  0)    # right-down
    for n in range(1, 92):
        posX = saveX[n]
        posY = saveY[n]
        k = grid[(posY-1)*SIZE+posX] + grid[(posY+1)*SIZE+posX]
        k+= grid[(posY-1)*SIZE+posX-1] + grid[(posY-1)*SIZE+posX+1]
        k+= grid[(posY+1)*SIZE+posX-1] + grid[(posY+1)*SIZE+posX+1]
        k+= grid[posY*SIZE+posX-1] + grid[posY*SIZE+posX+1]
        print(k, end=', ')