A217011 Permutation of natural numbers arising from applying the walk of a square spiral (e.g. A214526) to the data of right triangular type-2 spiral (defined in A214251).
1, 5, 19, 6, 8, 9, 10, 2, 3, 4, 18, 41, 73, 42, 20, 7, 24, 25, 26, 27, 28, 11, 12, 13, 14, 15, 17, 40, 72, 113, 163, 114, 74, 43, 21, 23, 49, 50, 51, 52, 53, 54, 55, 29, 30, 31, 32, 33, 34, 35, 16, 39, 71, 112, 162, 221
Offset: 1
Programs
-
Python
SIZE = 33 # must be 4k+1 grid = [0] * (SIZE*SIZE) posX = posY = SIZE//2 grid[posY*SIZE+posX]=1 n = 2 def walk(stepX, stepY, chkX, chkY): global posX, posY, n while 1: posX+=stepX posY+=stepY grid[posY*SIZE+posX]=n n+=1 if grid[(posY+chkY)*SIZE+posX+chkX]==0: return while 1: walk(-1, 0, 0, -1) # left walk(0, -1, 1, 1) # up if posY==0: break walk( 1, 1, -1, 0) # right-down import sys grid2 = [0] * (SIZE*SIZE) posX = posY = SIZE//2 grid2[posY*SIZE+posX]=1 def walk2(stepX, stepY, chkX, chkY): global posX, posY while 1: a = grid[posY*SIZE+posX] if a==0: sys.exit(1) print(a, end=', ') posX+=stepX posY+=stepY grid2[posY*SIZE+posX]=1 if grid2[(posY+chkY)*SIZE+posX+chkX]==0: return while 1: walk2(0, -1, 1, 0) # up walk2(1, 0, 0, 1) # right walk2(0, 1, -1, 0) # down walk2(-1, 0, 0, -1) # left
Comments