A214252 Sum of the eight nearest neighbors of n in a right triangular type-3 spiral with positive integers.
62, 88, 63, 89, 76, 102, 170, 127, 126, 152, 223, 159, 140, 139, 159, 221, 175, 171, 179, 202, 249, 353, 274, 252, 254, 262, 279, 323, 430, 330, 293, 283, 291, 299, 307, 336, 425, 352, 339, 347, 355, 363, 371, 403, 468, 608, 493, 453, 446, 454, 462, 470, 478, 504
Offset: 1
Examples
Right triangular type-3 spiral begins: 78 77 46 76 45 47 75 44 22 48 74 43 21 23 49 73 42 20 7 24 50 72 41 19 6 8 25 51 71 40 18 5 1 9 26 52 70 39 17 4 3 2 10 27 53 69 38 16 15 14 13 12 11 28 54 68 37 36 35 34 33 32 31 30 29 55 67 66 65 64 63 62 61 60 59 58 57 56 The eight nearest neighbors of 5 are 1, 3, 4, 17, 18, 19, 6, 8. Their sum is a(5)=76.
Programs
-
Python
SIZE=28 # must be even grid = [0] * (SIZE*SIZE) saveX = [0]* (SIZE*SIZE) saveY = [0]* (SIZE*SIZE) saveX[1] = saveY[1] = posX = posY = SIZE//2 grid[posY*SIZE+posX]=1 n = 2 def walk(stepX, stepY, chkX, chkY): global posX, posY, n while 1: posX+=stepX posY+=stepY grid[posY*SIZE+posX]=n saveX[n]=posX saveY[n]=posY n+=1 if posY==0 or grid[(posY+chkY)*SIZE+posX+chkX]==0: return while posY!=0: walk( 1, 1, -1, 0) # right-down walk(-1, 0, 0, -1) # left walk(0, -1, 1, 1) # up for n in range(1, 92): posX = saveX[n] posY = saveY[n] k = grid[(posY-1)*SIZE+posX] + grid[(posY+1)*SIZE+posX] k+= grid[(posY-1)*SIZE+posX-1] + grid[(posY-1)*SIZE+posX+1] k+= grid[(posY+1)*SIZE+posX-1] + grid[(posY+1)*SIZE+posX+1] k+= grid[posY*SIZE+posX-1] + grid[posY*SIZE+posX+1] print(k, end=' ')
Comments