A214257 Number A(n,k) of compositions of n where the difference between largest and smallest parts is <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 1, 1, 2, 4, 6, 2, 1, 1, 2, 4, 8, 11, 4, 1, 1, 2, 4, 8, 14, 15, 2, 1, 1, 2, 4, 8, 16, 27, 27, 4, 1, 1, 2, 4, 8, 16, 30, 47, 39, 3, 1, 1, 2, 4, 8, 16, 32, 59, 88, 63, 4, 1, 1, 2, 4, 8, 16, 32, 62, 111, 158, 100, 2
Offset: 0
Examples
A(3,0) = 2: [3], [1,1,1]. A(4,1) = 6: [4], [2,2], [2,1,1], [1,2,1], [1,1,2], [1,1,1,1]. A(5,1) = 8: [5], [3,2], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,2,2], [1,2,1,1], [1,1,2,1], [1,1,1,2], [1,1,1,1,1], A(5,2) = 14: [5], [3,2], [3,1,1], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,3,1], [1,2,2], [1,2,1,1], [1,1,3], [1,1,2,1], [1,1,1,2], [1,1,1,1,1]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, 2, 2, ... 2, 4, 4, 4, 4, 4, 4, 4, ... 3, 6, 8, 8, 8, 8, 8, 8, ... 2, 11, 14, 16, 16, 16, 16, 16, ... 4, 15, 27, 30, 32, 32, 32, 32, ... 2, 27, 47, 59, 62, 64, 64, 64, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..150, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, k, s, t) option remember; `if`(n<0, 0, `if`(n=0, 1, add(b(n-j, k, min(s,j), max(t,j)), j=max(1, t-k+1)..s+k-1))) end: A:= (n, k)-> `if`(n=0, 1, add(b(n-j, k+1, j, j), j=1..n)): seq(seq(A(n, d-n), n=0..d), d=0..11); # second Maple program: b:= proc(n, s, t) option remember; `if`(n=0, x^(t-s), add(b(n-j, min(s, j), max(t, j)), j=1..n)) end: T:= (n, k)-> coeff(b(n$2, 0), x, k): A:= proc(n, k) option remember; `if`(k<0, 0, `if`(k>n, A(n$2), A(n, k-1)+T(n, k))) end: seq(seq(A(n, d-n), n=0..d), d=0..11); # Alois P. Heinz, Jan 05 2019
-
Mathematica
b[n_, k_, s_, t_] := b[n, k, s, t] = If[n < 0, 0, If[n == 0, 1, Sum [b[n - j, k, Min[s, j], Max[t, j]], {j, Max[1, t - k + 1], s + k - 1}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n - j, k + 1, j, j], {j, 1, n}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
Formula
T(n,k) = Sum_{i=0..k} A214258(n,i).