cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214258 Number T(n,k) of compositions of n where the difference between largest and smallest parts equals k; triangle T(n,k), n>=1, 0<=k

Original entry on oeis.org

1, 2, 0, 2, 2, 0, 3, 3, 2, 0, 2, 9, 3, 2, 0, 4, 11, 12, 3, 2, 0, 2, 25, 20, 12, 3, 2, 0, 4, 35, 49, 23, 12, 3, 2, 0, 3, 60, 95, 58, 23, 12, 3, 2, 0, 4, 96, 188, 123, 61, 23, 12, 3, 2, 0, 2, 157, 366, 266, 132, 61, 23, 12, 3, 2, 0, 6, 241, 714, 557, 294, 135, 61, 23, 12, 3, 2, 0
Offset: 1

Views

Author

Alois P. Heinz, Jul 08 2012

Keywords

Comments

For fixed k > 0, limit_{n->infinity} T(n,k)^(1/n) = d, where d > 1 is the real root of the equation d^(k+2) - 2*d^(k+1) + 1 = 0. - Vaclav Kotesovec, Jan 07 2019

Examples

			T(4,0) = 3: [4], [2,2], [1,1,1,1].
T(5,1) = 9: [3,2], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,2,2], [1,2,1,1], [1,1,2,1], [1,1,1,2].
T(5,2) = 3: [3,1,1], [1,3,1], [1,1,3].
T(5,3) = 2: [4,1], [1,4].
T(6,2) = 12: [4,2], [3,2,1], [3,1,2], [3,1,1,1], [2,4], [2,3,1], [2,1,3], [1,3,2], [1,3,1,1], [1,2,3], [1,1,3,1], [1,1,1,3].
Triangle T(n,k) begins:
  1;
  2,  0;
  2,  2,  0;
  3,  3,  2,  0;
  2,  9,  3,  2,  0;
  4, 11, 12,  3,  2,  0;
  2, 25, 20, 12,  3,  2,  0;
  4, 35, 49, 23, 12,  3,  2,  0;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, s, t) option remember;
          `if`(n<0, 0, `if`(n=0, 1, add(b(n-j, k,
           min(s,j), max(t,j)), j=max(1, t-k+1)..s+k-1)))
        end:
    A:= proc(n, k) option remember;
          `if`(n=0, 1, add(b(n-j, k+1, j, j), j=1..n))
        end:
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n,k), k=0..n-1), n=1..15);
    # second Maple program:
    b:= proc(n, s, t) option remember; `if`(n=0, x^(t-s),
          add(b(n-j, min(s, j), max(t, j)), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n$2, 0)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Jan 05 2019
  • Mathematica
    b[n_, k_, s_, t_] := b[n, k, s, t] = If[n < 0, 0, If[n == 0, 1, Sum [b[n-j, k, Min[s, j], Max[t, j]], {j, Max[1, t-k+1], s+k-1}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[b[n-j, k+1, j, j], {j, 1, n}]]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)

Formula

T(n,0) = A214257(n,0), T(n,k) = A214257(n,k)-A214257(n,k-1) for k>0.