A214258
Number T(n,k) of compositions of n where the difference between largest and smallest parts equals k; triangle T(n,k), n>=1, 0<=k
1, 2, 0, 2, 2, 0, 3, 3, 2, 0, 2, 9, 3, 2, 0, 4, 11, 12, 3, 2, 0, 2, 25, 20, 12, 3, 2, 0, 4, 35, 49, 23, 12, 3, 2, 0, 3, 60, 95, 58, 23, 12, 3, 2, 0, 4, 96, 188, 123, 61, 23, 12, 3, 2, 0, 2, 157, 366, 266, 132, 61, 23, 12, 3, 2, 0, 6, 241, 714, 557, 294, 135, 61, 23, 12, 3, 2, 0
Offset: 1
Examples
T(4,0) = 3: [4], [2,2], [1,1,1,1]. T(5,1) = 9: [3,2], [2,3], [2,2,1], [2,1,2], [2,1,1,1], [1,2,2], [1,2,1,1], [1,1,2,1], [1,1,1,2]. T(5,2) = 3: [3,1,1], [1,3,1], [1,1,3]. T(5,3) = 2: [4,1], [1,4]. T(6,2) = 12: [4,2], [3,2,1], [3,1,2], [3,1,1,1], [2,4], [2,3,1], [2,1,3], [1,3,2], [1,3,1,1], [1,2,3], [1,1,3,1], [1,1,1,3]. Triangle T(n,k) begins: 1; 2, 0; 2, 2, 0; 3, 3, 2, 0; 2, 9, 3, 2, 0; 4, 11, 12, 3, 2, 0; 2, 25, 20, 12, 3, 2, 0; 4, 35, 49, 23, 12, 3, 2, 0;
Links
- Alois P. Heinz, Rows n = 1..150, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, k, s, t) option remember; `if`(n<0, 0, `if`(n=0, 1, add(b(n-j, k, min(s,j), max(t,j)), j=max(1, t-k+1)..s+k-1))) end: A:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k+1, j, j), j=1..n)) end: T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)): seq(seq(T(n,k), k=0..n-1), n=1..15); # second Maple program: b:= proc(n, s, t) option remember; `if`(n=0, x^(t-s), add(b(n-j, min(s, j), max(t, j)), j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n$2, 0)): seq(T(n), n=1..15); # Alois P. Heinz, Jan 05 2019
-
Mathematica
b[n_, k_, s_, t_] := b[n, k, s, t] = If[n < 0, 0, If[n == 0, 1, Sum [b[n-j, k, Min[s, j], Max[t, j]], {j, Max[1, t-k+1], s+k-1}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[b[n-j, k+1, j, j], {j, 1, n}]]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
Comments