A214268 Number A(n,k) of compositions of n where the difference between largest and smallest parts is <= k and adjacent parts are unequal; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 3, 4, 5, 3, 1, 1, 1, 1, 3, 4, 7, 11, 5, 1, 1, 1, 1, 3, 4, 7, 12, 12, 3, 1, 1, 1, 1, 3, 4, 7, 14, 20, 16, 5, 1, 1, 1, 1, 3, 4, 7, 14, 21, 28, 30, 5, 1
Offset: 0
Examples
A(3,0) = 1: [3]. A(4,1) = 2: [4], [1,2,1]. A(5,2) = 5: [5], [3,2], [2,3], [2,1,2], [1,3,1]. A(6,3) = 12: [6], [4,2], [3,2,1], [3,1,2], [2,4], [2,3,1], [2,1,3], [2,1,2,1], [1,4,1], [1,3,2], [1,2,3], [1,2,1,2]. A(7,4) = 21: [7], [5,2], [4,3], [4,2,1], [4,1,2], [3,4], [3,1,3], [3,1,2,1], [2,5], [2,4,1], [2,3,2], [2,1,4], [2,1,3,1], [1,5,1], [1,4,2], [1,3,2,1], [1,3,1,2], [1,2,4], [1,2,3,1], [1,2,1,3], [1,2,1,2,1]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 3, 3, 3, 3, 3, 3, 3, ... 1, 2, 4, 4, 4, 4, 4, 4, ... 1, 4, 5, 7, 7, 7, 7, 7, ... 1, 3, 11, 12, 14, 14, 14, 14, ... 1, 5, 12, 20, 21, 23, 23, 23, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140
Crossrefs
Programs
-
Maple
b:= proc(n, k, s, t, l) option remember; `if`(n<0, 0, `if`(n=0, 1, add(`if`(j=l, 0, b(n-j, k, min(s, j), max(t, j), j)), j=max(1, t-k+1)..s+k-1))) end: A:= (n, k)-> `if`(n=0, 1, add(b(n-j, k+1, j, j, j), j=1..n)): seq(seq(A(n,d-n), n=0..d), d=0..14);
-
Mathematica
b[n_, k_, s_, t_, l_] := b[n, k, s, t, l] = If[n < 0, 0, If[n == 0, 1, Sum[If[j == l, 0, b[n - j, k, Min[s, j], Max[t, j], j]], {j, Max[1, t - k + 1], s + k - 1}]]]; A[n_, k_] := If[n == 0, 1, Sum[b[n - j, k + 1, j, j, j], {j, 1, n}]]; Table[Table[A [n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)