A214270 Number of compositions of n where the difference between largest and smallest parts equals 1 and adjacent parts are unequal.
0, 0, 2, 1, 3, 2, 4, 2, 4, 4, 4, 3, 5, 4, 6, 2, 6, 6, 4, 4, 6, 6, 6, 3, 7, 4, 8, 6, 4, 6, 6, 6, 8, 4, 8, 4, 6, 8, 8, 5, 5, 8, 6, 4, 12, 6, 6, 4, 8, 8, 6, 8, 8, 6, 8, 4, 8, 8, 8, 9, 5, 6, 12, 2, 8, 8, 10, 8, 6, 8, 6, 8, 8, 6, 10, 6, 12, 8, 4, 6, 10, 8, 8, 7, 11
Offset: 1
Keywords
Examples
a(3) = 2: [2,1], [1,2]. a(4) = 1: [1,2,1]. a(5) = 3: [3,2], [2,3], [2,1,2]. a(14) = 4: [5,4,5], [4,3,4,3], [3,4,3,4], [2,1,2,1,2,1,2,1,2]. a(19) = 4: [9,10], [6,7,6], [10,9], [1,2,1,2,1,2,1,2,1,2,1,2,1]. a(25) = 7: [13,12], [12,13], [8,9,8], [4,3,4,3,4,3,4], [3,2,3,2,3,2,3,2,3,2], [2,3,2,3,2,3,2,3,2,3], [1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Column k=1 of A214269.
Programs
-
Maple
a:= proc(n) local m, r, s, t; r, s, t:= 0, 1, 2; while s+t<=n do m:= irem(n, s+t); r:= r+ `if`(m=0, 2, `if`(m in {s, t}, 1, 0)); s, t:= s+1, t+1 od; r end: seq(a(n), n=1..100);
-
Mathematica
a[n_] := Module[{m, r, s, t}, {r, s, t} = {0, 1, 2}; While[s+t <= n, m = Mod[n, s+t]; r = r+If[m==0, 2, If[m==s || m==t, 1, 0]]; {s, t} = {s+1, t+1}]; r]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 13 2022, after Alois P. Heinz *)