cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A214269 Number T(n,k) of compositions of n where the difference between largest and smallest parts equals k and adjacent parts are unequal; triangle T(n,k), n>=1, 0<=k

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 3, 1, 2, 0, 1, 2, 8, 1, 2, 0, 1, 4, 7, 8, 1, 2, 0, 1, 2, 13, 12, 8, 1, 2, 0, 1, 4, 25, 18, 12, 8, 1, 2, 0, 1, 4, 27, 46, 23, 12, 8, 1, 2, 0, 1, 4, 43, 69, 51, 23, 12, 8, 1, 2, 0, 1, 3, 71, 111, 90, 56, 23, 12, 8, 1, 2, 0
Offset: 1

Views

Author

Alois P. Heinz, Jul 09 2012

Keywords

Examples

			T(7,0) = 1: [7].
T(7,1) = 4: [4,3], [3,4], [2,3,2], [1,2,1,2,1].
T(7,2) = 7: [3,1,3], [3,1,2,1], [2,1,3,1], [1,3,2,1], [1,3,1,2], [1,2,3,1], [1,2,1,3].
T(7,3) = 8: [5,2], [4,2,1], [4,1,2], [2,5], [2,4,1], [2,1,4], [1,4,2], [1,2,4].
T(7,4) = 1: [1,5,1].
T(7,5) = 2: [6,1], [1,6].
Triangle T(n,k) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  1,  2,  0;
  1,  3,  1,  2,  0;
  1,  2,  8,  1,  2,  0;
  1,  4,  7,  8,  1,  2,  0;
  1,  2, 13, 12,  8,  1,  2,  0;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, s, t, l) option remember;
          `if`(n<0, 0, `if`(n=0, 1, add(`if`(j=l, 0, b(n-j, k,
           min(s, j), max(t, j), j)), j=max(1, t-k+1)..s+k-1)))
        end:
    A:= proc(n, k) option remember;
          `if`(n=0, 1, add(b(n-j, k+1, j, j, j), j=1..n))
        end:
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n-1), n=1..14);
  • Mathematica
    b[n_, k_, s_, t_, l_] := b[n, k, s, t, l] = If[n < 0, 0, If[n == 0, 1, Sum [If[j == l, 0, b[n-j, k, Min[s, j], Max[t, j], j]], {j, Max[1, t-k+1], s+k-1}] ] ]; a[n_, k_] := a[n, k] = If[n == 0, 1, Sum[b[n - j, k+1, j, j, j], {j, 1, n}]]; t[n_, k_] := a[n, k] - If[k == 0, 0, a[n, k-1]]; Table[Table[t[n, k], {k, 0, n-1}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)

Formula

T(n,0) = 1, T(n,k) = A214268(n,k) - A214268(n,k-1) for k>0.
Showing 1-1 of 1 results.